• Ailikun, B., , and T. Yasunari, 1998: On the two indices of Asian summer monsoon variability and their implications. Extended Abstracts, Int. Conf. on Monsoon and Hydrologic Cycle, Kyongju, South Korea, Korean Meteorological Society, 222–224.

  • Ananthakrishnan, R., 1988: The onset of the southwest monsoon over Kerala: 1901–1980. Int. J. Climatol., 8, 283296, doi:10.1002/joc.3370080305.

    • Search Google Scholar
    • Export Citation
  • Bookhagen, B., , and D. W. Burbank, 2010: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res., 115, F03019, doi:10.1029/2009JF001426.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , C. Jones, , A. E. Silva, , B. Liebmann, , and P. L. Silva Dias, 2011a: The South American monsoon system and the 1970s climate transition. Int. J. Climatol., 31, 12481256, doi:10.1002/joc.2147.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , A. E. Silva, , C. Jones, , B. Liebmann, , P. L. Silva Dias, , and H. R. Rocha, 2011b: Moisture transport and intraseasonal variability in the South America monsoon system. Climate Dyn., 36, 18651880, doi:10.1007/s00382-010-0806-2.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., , and K. M. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108, 298312, doi:10.1175/1520-0493(1980)108<0298:NCSANE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., , and K. M. Lau, 1982: Short-term planetary-scale interactions over the tropics and midlatitudes during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110, 933946, doi:10.1175/1520-0493(1982)110<0933:STPSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., , Z. Wang, , J. McBride, , and C. H. Liu, 2005: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, doi:10.1175/JCLI-3257.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., , G. N. Kiladis, , and P. J. Webster, 1999: The horizontal and vertical structure of East Asia winter monsoon pressure surges. Quart. J. Roy. Meteor. Soc., 125, 2954, doi:10.1002/qj.49712555304.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • da Silva, A. E., , and L. M. V. de Carvalho, 2007: Large-scale index for South America monsoon (LISAM). Atmos. Sci. Lett., 8, 5157, doi:10.1002/asl.150.

    • Search Google Scholar
    • Export Citation
  • Dhar, O. N., , and P. R. Rakhecha, 1983: Foreshadowing northeast monsoon rainfall over Tamil Nadu, India. Mon. Wea. Rev., 111, 109112, doi:10.1175/1520-0493(1983)111<0109:FNMROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., 2015: Initiation and intensification of tropical depressions over the southern Indian Ocean: Influence of the MJO. Mon. Wea. Rev., 143, 21702191, doi:10.1175/MWR-D-14-00318.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., , and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 32003211, doi:10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , V. Krishnamurthy, , and H. Annmalai, 1999: A broad‐scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633, doi:10.1002/qj.49712555412.

    • Search Google Scholar
    • Export Citation
  • Guan, Z., , and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , M. E. Ockert-Bell, , and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., , and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, doi:10.1175/JCLI4252.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, H. H., , C. T. Terng, , and C. T. Chen, 1999: Evolution of large-scale circulation and heating during the first transition of Asian summer monsoon. J. Climate, 12, 793810, doi:10.1175/1520-0442(1999)012<0793:EOLSCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., , and P. Xie, 2003: A global-scale examination of monsoon-related precipitation. J. Climate, 16, 41214133, doi:10.1175/1520-0442(2003)016<4121:AGEOMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. V. Carvalho, 2011a: Will global warming modify the activity of the Madden–Julian oscillation? Quart. J. Roy. Meteor. Soc., 137, 544552, doi:10.1002/qj.765.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. V. Carvalho, 2011b: Stochastic simulations of the Madden–Julian oscillation activity. Climate Dyn., 36, 229246, doi:10.1007/s00382-009-0660-2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. V. Carvalho, 2012: Spatial–intensity variations in extreme precipitation in the contiguous United States and the Madden–Julian oscillation. J. Climate, 25, 48984913, doi:10.1175/JCLI-D-11-00278.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. V. Carvalho, 2013: Climate change in the South American monsoon system: Present climate and CMIP5 projections. J. Climate, 26, 66606678, doi:10.1175/JCLI-D-12-00412.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , L. M. V. Carvalho, , R. W. Higgins, , D. E. Waliser, , and J. K. E. Schemm, 2004: Climatology of tropical intraseasonal convective anomalies: 1979–2002. J. Climate, 17, 523539, doi:10.1175/1520-0442(2004)017<0523:COTICA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , L. M. V. Carvalho, , and B. Liebmann, 2012: Forecast skill of the South American monsoon system. J. Climate, 25, 18831889, doi:10.1175/JCLI-D-11-00586.1.

    • Search Google Scholar
    • Export Citation
  • Joseph, S., , A. K. Sahai, , and B. N. Goswami, 2008: Eastward propagating MJO during boreal summer and Indian monsoon droughts. Climate Dyn., 32, 11391153, doi:10.1007/s00382-008-0412-8.

    • Search Google Scholar
    • Export Citation
  • Kala, C. P., 2014: Deluge, disaster and development in Uttarakhand Himalayan region of India: Challenges and lessons for disaster management. Int. J. Disaster Risk Reduct., 8, 143152, doi:10.1016/j.ijdrr.2014.03.002.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436, doi:10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kripalani, R. H., , A. Kulkarni, , S. S. Sabade, , J. V. Revadekar, , S. K. Patwardhan, , and J. R. Kulkarni, 2004: Intraseasonal oscillations during monsoon 2002 and 2003. Curr. Sci., 87, 325331.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32A, 1526, doi:10.1111/j.2153-3490.1980.tb01717.x.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , and Y. Ramanathan, 1982: Sensitivity of the monsoon onset to differential heating. J. Atmos. Sci., 39, 12901306, doi:10.1175/1520-0469(1982)039<1290:SOTMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , H. S. Bedi, , and M. Subramaniam, 1989: The summer monsoon of 1987. J. Climate, 2, 321340, doi:10.1175/1520-0442(1989)002<0321:TSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., , B. Rajagopalan, , M. Hoerling, , G. Bates, , and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, doi:10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Kumari, N. P. A., , S. B. Kumar, , J. Jayalakshmi, , and K. K. Reddy, 2014: Raindrop size distribution variations in JAL and NILAM cyclones induced precipitation observed over Kadapa(14.4N, 78.82E), a tropical semi-arid region of India. Indian J. Radio Space Phys., 43, 5766.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , H. T. Wu, , and S. Yang, 1998: Hydrologic processes associated with the first transition of the Asian summer monsoon: A pilot satellite study. Bull. Amer. Meteor. Soc., 79, 18711882, doi:10.1175/1520-0477(1998)079<1871:HPAWTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., , and P. J. Webster, 2001: Interannual variability of intraseasonal convection and the Asian monsoon. J. Climate, 14, 29102922, doi:10.1175/1520-0442(2001)014<2910:IVOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., , and P. J. Webster, 2002: The boreal summer intraseasonal oscillation and the South Asian monsoon. J. Atmos. Sci., 59, 15931606, doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651, doi:10.1002/qj.49712656902.

    • Search Google Scholar
    • Export Citation
  • Misra, V., , and S. DiNapoli, 2014: The variability of the Southeast Asian summer monsoon. Int. J. Climatol., 34, 893901, doi:10.1002/joc.3735.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., , and T. Nakazawa, 1985: Transition from the Southern to Northern Hemisphere summer monsoon. Mon. Wea. Rev., 113, 14701486, doi:10.1175/1520-0493(1985)113<1470:TFTSTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., , and M. Rajeevan, 2007: Indian summer monsoon onset: Variability and prediction. National Climate Center Research Rep. 4/2007, 27 pp.

  • Pai, D. S., , J. Bhate, , O. P. Sreejith, , and H. R. Hatwar, 2011: Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Climate Dyn., 36, 4155, doi:10.1007/s00382-009-0634-4.

    • Search Google Scholar
    • Export Citation
  • Parthasarathy, B., , A. A. Munot, , and D. R. Kothawale, 1994: All-India monthly and seasonal rainfall series: 1871–1993. Theor. Appl. Climatol., 49, 217224, doi:10.1007/BF00867461.

    • Search Google Scholar
    • Export Citation
  • Peng, Z. K., , M. R. Jackson, , J. A. Rongong, , F. L. Chu, , and R. M. Parkin, 2009: On the energy leakage of discrete wavelet transform. Mech. Syst. Signal Process., 23, 330343, doi:10.1016/j.ymssp.2008.05.014.

    • Search Google Scholar
    • Export Citation
  • Prasad, V. S., , and T. Hayashi, 2007: Large-scale summer monsoon rainfall over India and its relation to 850 hPa wind shear. Hydrol. Processes, 21, 19921996, doi:10.1002/hyp.6707.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., , S. Gadgil, , and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, doi:10.1007/s12040-010-0019-4.

    • Search Google Scholar
    • Export Citation
  • Rao, Y. P., 1976: Southwest Monsoon. Meteor. Monogr.: Synoptic Meteor., No. 1, India Meteorological Department, 367 pp.

  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Soc, 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Singh, N., , and N. A. Sontakke, 1999: On the variability and prediction of rainfall in the post‐monsoon season over India. Int. J. Climatol., 19, 309339, doi:10.1002/(SICI)1097-0088(19990315)19:3<309::AID-JOC361>3.0.CO;2-#.

    • Search Google Scholar
    • Export Citation
  • Singh, P., , V. Vasudevan, , J. S. Chowdary, , and C. Gnanaseelan, 2015: Subseasonal variations of Indian summer monsoon with special emphasis on drought and excess rainfall years. Int. J. Climatol., 35, 570582, doi:10.1002/joc.4004.

    • Search Google Scholar
    • Export Citation
  • Soman, M. K., , and K. K. Kumar, 1993: Space–time evolution of meteorological features associated with the onset of Indian summer monsoon. Mon. Wea. Rev., 121, 11771194, doi:10.1175/1520-0493(1993)121<1177:STEOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suhas, E., , J. M. Neena, , and B. N. Goswami, 2013: An Indian monsoon intraseasonal oscillations (MISO) index for real time monitoring and forecast verification. Climate Dyn., 40, 26052616, doi:10.1007/s00382-012-1462-5.

    • Search Google Scholar
    • Export Citation
  • Taniguchi, K., , and T. Koike, 2006: Comparison of definitions of Indian summer monsoon onset: Better representation of rapid transitions of atmospheric conditions. Geophys. Res. Lett., 33, L02709, doi:10.1029/2005GL024526.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vellore, R. K., , R. Krishnan, , J. Pendharkar, , A. D. Choudhury, , and T. P. Sabin, 2014: On the anomalous precipitation enhancement over the Himalayan foothills during monsoon breaks. Climate Dyn., 43, 20092031, doi:10.1007/s00382-013-2024-1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , W. Stern, , S. Schubert, , and K. M. Lau, 2003: Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 129, 28972925, doi:10.1256/qj.02.51.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2006: The Asian Monsoon. Springer, 787 pp.

  • Wang, B., , and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , S. C. Clemens, , and P. Liu, 2003: Contrasting the Indian and East Asian monsoons: Implications on geologic timescales. Mar. Geol., 201, 521, doi:10.1016/S0025-3227(03)00196-8.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wu, G. X., , and Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , C. Li, , and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , J. Fei, , X. Huang, , X. Cheng, , L. M. V. Carvalho, , and H. He, 2015: Characteristics of mesoscale convective systems over China and its vicinity using geostationary satellite FY2. J. Climate, 28, 48904907, doi:10.1175/JCLI-D-14-00491.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 162 51
PDF Downloads 112 112 33

Intraseasonal-to-Interannual Variability of the Indian Monsoon Identified with the Large-Scale Index for the Indian Monsoon System (LIMS)

View More View Less
  • 1 Department of Geography, and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California
© Get Permissions
Restricted access

Abstract

The Indian monsoon system (IMS) is among the most complex and important climatic features on land. This study proposes a simple and robust method to investigate large-scale variations and changes in the IMS that accounts for fluctuations in amplitude, onset, and duration of the summer monsoon, including active and break phases, and the postmonsoon season. This study uses 35 years (1979–2013) of daily data from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) at 1° resolution and indicates great potential for application to other reanalyses and climate model datasets. The method is based on combined EOF (CEOF) analysis of variables associated with the IMS’s seasonal cycle (precipitation, circulation at 10 m, and temperature and specific humidity at 2 m). The first CEOF (CEOF-1) explains ~40% of the total variance and represents the continental-scale Asian monsoon. The second CEOF (CEOF-2) explains 11% of the variance and characterizes the Indian monsoon variability, including increased precipitation over western, central, and northern parts of India and the monsoon onset and demise over those regions. Thus, CEOF-2 is referred to as the large-scale index for the Indian monsoon system (LIMS). It is shown that LIMS’s amplitude is strongly correlated with the total June–September precipitation over India. LIMS is continuous in time and can be used to evaluate significant postmonsoon rainfall events that often affect the Indian subcontinent. Moreover, LIMS exhibits spectral variance on intraseasonal time scales that are associated with active and break phases of the monsoon during summer and enhanced rainfall in the postmonsoon period.

Corresponding author address: Dr. Leila M. V. Carvalho, Dept. of Geography, University of California, Santa Barbara, Santa Barbara, CA 93106. E-mail: leila@eri.ucsb.edu

Abstract

The Indian monsoon system (IMS) is among the most complex and important climatic features on land. This study proposes a simple and robust method to investigate large-scale variations and changes in the IMS that accounts for fluctuations in amplitude, onset, and duration of the summer monsoon, including active and break phases, and the postmonsoon season. This study uses 35 years (1979–2013) of daily data from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) at 1° resolution and indicates great potential for application to other reanalyses and climate model datasets. The method is based on combined EOF (CEOF) analysis of variables associated with the IMS’s seasonal cycle (precipitation, circulation at 10 m, and temperature and specific humidity at 2 m). The first CEOF (CEOF-1) explains ~40% of the total variance and represents the continental-scale Asian monsoon. The second CEOF (CEOF-2) explains 11% of the variance and characterizes the Indian monsoon variability, including increased precipitation over western, central, and northern parts of India and the monsoon onset and demise over those regions. Thus, CEOF-2 is referred to as the large-scale index for the Indian monsoon system (LIMS). It is shown that LIMS’s amplitude is strongly correlated with the total June–September precipitation over India. LIMS is continuous in time and can be used to evaluate significant postmonsoon rainfall events that often affect the Indian subcontinent. Moreover, LIMS exhibits spectral variance on intraseasonal time scales that are associated with active and break phases of the monsoon during summer and enhanced rainfall in the postmonsoon period.

Corresponding author address: Dr. Leila M. V. Carvalho, Dept. of Geography, University of California, Santa Barbara, Santa Barbara, CA 93106. E-mail: leila@eri.ucsb.edu
Save