• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexandru, A., , R. de Elia, , R. Laprise, , L. Separovic, , and S. Biner, 2009: Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137, 16661685, doi:10.1175/2008MWR2620.1.

    • Search Google Scholar
    • Export Citation
  • Bowden, J. H., , T. L. Otte, , C. G. Nolte, , and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF Model for regional climate modeling. J. Climate, 25, 28052823, doi:10.1175/JCLI-D-11-00167.1.

    • Search Google Scholar
    • Export Citation
  • Cao, G., , T. W. Giambelluca, , D. E. Stevens, , and T. A. Schroeder, 2007: Inversion variability in the Hawaiian trade wind regime. J. Climate, 20, 11451160, doi:10.1175/JCLI4033.1.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., , R. A. Pielke Sr., , and G. Leoncini, 2005: Dynamical downscaling: Assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J. Geophys. Res., 110, D05108, doi:10.1029/2004JD004721.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., , and A. J. Nash, 1994: Diurnal variations of surface airflow and rainfall frequencies on the island of Hawaii. Mon. Wea. Rev., 122, 3456, doi:10.1175/1520-0493(1994)122<0034:DVOSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., , and J. D. Clark, 1999: Decadal variations of tropical cyclone activity over the central North Pacific. Bull. Amer. Meteor. Soc., 80, 18751881, doi:10.1175/1520-0477(1999)080<1875:DVOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., , and H. Chen, 2005: Interannual and interdecadal rainfall variations in the Hawaiian Islands. J. Climate, 18, 47964813, doi:10.1175/JCLI3578.1.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cretat, J. C., , M. B. Pohl, , and Y. Richard, 2011: Quantifying internal variability in a regional climate model: A case study for Southern Africa. Climate Dyn., 37, 13351356, doi:10.1007/s00382-011-1021-5.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., , T. W. Giambelluca, , H. F. Diaz, , and H. L. Needham, 2016: Comparison of geostatistical approaches to spatially interpolate month-year rainfall for the Hawaiian Islands. Int. J. Climatol., 36, 14591470, doi:10.1002/joc.4437.

    • Search Google Scholar
    • Export Citation
  • Fu, C., and et al. , 2005: Regional climate model intercomparison project for Asia. Bull. Amer. Meteor. Soc., 86, 257266, doi:10.1175/BAMS-86-2-257.

    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., , Q. Chen, , A. G. Frazier, , J. P. Price, , Y.-L. Chen, , P.-S. Chu, , J. K. Eischeid, , and D. M. Delparte, 2013: Online rainfall atlas of Hawai‘i. Bull. Amer. Meteor. Soc., 94, 313316, doi:10.1175/BAMS-D-11-00228.1.

    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., and et al. , 2014: Evapotranspiration of Hawai‘i. U.S. Army Corps of Engineers Final Rep., 168 pp. [Available online at http://evapotranspiration.geography.hawaii.edu/assets/files/PDF/ET%20Project%20Final%20Report.pdf.]

  • Guo, P., , Y.-H. Kuo, , S. V. Sokolovskiy, , and D. H. Lenschow, 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 17031713, doi:10.1175/2011JAS3612.1.

    • Search Google Scholar
    • Export Citation
  • Harter, D. E. V., , S. D. H. Irl, , B. Seo, , M. J. Steinbauer, , R. Gillespie, , K. A. Triantis, , J.-M. Fernández-Palacios, , and C. Beierkuhnlein, 2015: Impacts of global climate change on the floras of oceanic islands—Projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst., 17, 160183, doi:10.1016/j.ppees.2015.01.003.

    • Search Google Scholar
    • Export Citation
  • Hartley, T. M., , and Y.-L. Chen, 2010: Characteristics of summer trade wind rainfall over Oahu. Wea. Forecasting, 25, 17971815, doi:10.1175/2010WAF2222328.1.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., , J. R. Alder, , and A. M. Allan, 2011: Dynamically downscaled climate simulations over North America: Methods, evaluation and supporting documentation for users. U.S. Geological Survey Open-File Rep. 2011-1238, 64 pp. [Available online at http://pubs.usgs.gov/of/2011/1238/pdf/ofr20111238.pdf.]

  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , G. Gu, , E. J. Nelkin, , K. P. Bowman, , E. F. Stocker, , and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., , N. M. Roberts, , H. J. Fowler, , M. J. Roberts, , S. C. Chan, , and C. A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570576, doi:10.1038/nclimate2258.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., , D. Caya, , M. Giguère, , G. Bergeron, , H. Côté, , J.-P. Blanchet, , G. J. Boer, , and N. A. McFarlane, 1998: Climate and climate change in western Canada as simulated by the Canadian Regional Climate Model. Atmos.–Ocean, 36, 119167, doi:10.1080/07055900.1998.9649609.

    • Search Google Scholar
    • Export Citation
  • Leong, J.-A., and et al. , 2014: Hawai‘i and U.S. affiliated Pacific islands. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T.C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 537–556, doi:10.7930/J0W66HPM.

  • Lo, J. C.-F., , Z.-L. Yang, , and R. A. Pielke Sr., 2008: Assessment of three dynamical downscaling methods using the Weather Research and Forecasting (WRF) Model. J. Geophys. Res., 113, D09112, doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • Lyons, S. W., 1982: Empirical orthogonal function analysis of Hawaiian rainfall. J. Appl. Meteor., 21, 17131729, doi:10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K., , M. Alexander, , J. D. Scott, , and J. Barsugli, 2013: High-resolution downscaled simulations of warm-season extreme precipitation events in the Colorado Front Range under past and future climates. J. Climate, 26, 86718689, doi:10.1175/JCLI-D-12-00744.1.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and et al. , 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., , G. L. Stenchikov, , and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Morel, B., , B. Pohl, , Y. Richard, , B. Bois, , and M. Bessafi, 2014: Regionalizing rainfall at very high resolution over La Réunion Island using a regional climate model. Mon. Wea. Rev., 142, 26652686, doi:10.1175/MWR-D-14-00009.1.

    • Search Google Scholar
    • Export Citation
  • Pérez, J. C., , J. P. Díaz, , A. González, , J. Expósito, , F. Rivera-López, , and D. Taima, 2014: Evaluation of WRF parameterizations for dynamical downscaling in the Canary Islands. J. Climate, 27, 56115631, doi:10.1175/JCLI-D-13-00458.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and et al. , 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and et al. , 2014: Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, doi:10.1175/JHM-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , C. L. Gentemann, , and G. K. Corlett, 2010: Evaluation of AATSR and TMI satellite SST data. J. Climate, 23, 152165, doi:10.1175/2009JCLI3252.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., 2010: State-of-the-art with regional climate models. Wiley Interdiscip. Rev.: Climate Change, 1, 8296, doi:10.1002/wcc.8.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., 1993: Climate controls. Prevailing Trade Winds: Weather and Climate in Hawai’i, M. Sanderson, Ed., University of Hawai’i Press, 12–36.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., , B. Kilonsky, , and B. Meisner, 1977: Diurnal variation in rainfall and cloudiness. Water Resources Research Center Tech. Rep. 112, 67 pp.

  • Sen Roy, S., , and R. C. Balling, 2004: Analysis of Hawaiian diurnal rainfall patterns. Theor. Appl. Climatol., 79, 209214, doi:10.1007/s00704-004-0075-2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp, doi:10.5065/D68S4MVH.

  • Sokolovskiy, S., , Y.-H. Kuo, , C. Rocken, , W. S. Schreiner, , D. Hunt, , and R. A. Anthes, 2006: Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys. Res. Lett., 33, L12813, doi:10.1029/2006GL025955.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , L. R. Leung, , J. L. McGregor, , D.-K. Lee, , W.-C. Wang, , Y.-H. Ding, , and F. Kimura, 2004: Regional climate modeling: Progress, challenges and prospects. J. Meteor. Soc. Japan, 82, 15991628, doi:10.2151/jmsj.82.1599.

    • Search Google Scholar
    • Export Citation
  • Xie, F., , D. L. Wu, , C. O. Ao, , A. J. Mannucci, , and E. R. Kursinski, 2012: Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos. Chem. Phys., 12, 903918, doi:10.5194/acp-12-903-2012.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. X., , Y. Wang, , and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in WRF-ARW using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. X., , Y. Wang, , A. Lauer, , and K. Hamilton, 2012a: Configuration and evaluation of the WRF Model for the study of Hawaiian regional climate. Mon. Wea. Rev., 140, 32593277, doi:10.1175/MWR-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. X., , Y. Wang, , A. Lauer, , K. Hamilton, , and F. Xie, 2012b: Cloud base and top heights in the Hawaiian region determined with satellite and ground-based measurements. Geophys. Res. Lett., 39, L15706, doi:10.1029/2012GL052355.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 30
PDF Downloads 91 91 25

Dynamical Downscaling of the Climate for the Hawaiian Islands. Part I: Present Day

View More View Less
  • 1 International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

Hawaii’s high and steep topography leads to pronounced small-scale variations in climate, and this makes comprehensive modeling of the weather and climate particularly challenging. This paper describes a regional model formulation designed for simulations of the microclimates in Hawaii and then documents and analyzes an extended retrospective simulation for near-present-day conditions. Part II will apply the model to projected climate conditions near the end of the present century.

A nested version of the Advanced Research version of the Weather Research and Forecasting Model with fine horizontal resolution and improved physics for the Hawaiian region has been configured. A 20-yr triply nested simulation of the atmospheric flow was undertaken with a 3-km-resolution mesh covering all main Hawaiian Islands and a 1-km mesh over Maui. Ocean surface temperatures are prescribed from observations, and meteorological fields at the boundaries of the outermost domain are taken from global reanalyses. The simulations are compared to surface, balloon, and satellite observations over the same period. The 3-km version of the model realistically simulates the frequency of trade wind inversions, time-mean rainfall, and other variables on relatively small scales over the island of Hawaii. There is a reasonable agreement between observed and simulated mean rainfall patterns over the other islands as well. However, the simulated distribution of mean rainfall over Kauai and (most particularly) Maui and Oahu reveals some significant deficiencies, which is attributed to inadequate resolution of the topography on these islands. The 1-km simulation over Maui shows clear improvement in the mean rainfall over the 3-km version.

Current affiliation: DLR Institute of Atmospheric Physics, Oberpfaffenhofen, Germany.

Corresponding author address: Dr. Yuqing Wang, International Pacific Research Center, SOEST, University of Hawai‘i at Mānoa, 1680 East-West Road, Honolulu, HI 96822. E-mail: yuqing@hawaii.edu

Abstract

Hawaii’s high and steep topography leads to pronounced small-scale variations in climate, and this makes comprehensive modeling of the weather and climate particularly challenging. This paper describes a regional model formulation designed for simulations of the microclimates in Hawaii and then documents and analyzes an extended retrospective simulation for near-present-day conditions. Part II will apply the model to projected climate conditions near the end of the present century.

A nested version of the Advanced Research version of the Weather Research and Forecasting Model with fine horizontal resolution and improved physics for the Hawaiian region has been configured. A 20-yr triply nested simulation of the atmospheric flow was undertaken with a 3-km-resolution mesh covering all main Hawaiian Islands and a 1-km mesh over Maui. Ocean surface temperatures are prescribed from observations, and meteorological fields at the boundaries of the outermost domain are taken from global reanalyses. The simulations are compared to surface, balloon, and satellite observations over the same period. The 3-km version of the model realistically simulates the frequency of trade wind inversions, time-mean rainfall, and other variables on relatively small scales over the island of Hawaii. There is a reasonable agreement between observed and simulated mean rainfall patterns over the other islands as well. However, the simulated distribution of mean rainfall over Kauai and (most particularly) Maui and Oahu reveals some significant deficiencies, which is attributed to inadequate resolution of the topography on these islands. The 1-km simulation over Maui shows clear improvement in the mean rainfall over the 3-km version.

Current affiliation: DLR Institute of Atmospheric Physics, Oberpfaffenhofen, Germany.

Corresponding author address: Dr. Yuqing Wang, International Pacific Research Center, SOEST, University of Hawai‘i at Mānoa, 1680 East-West Road, Honolulu, HI 96822. E-mail: yuqing@hawaii.edu
Save