• Baule, W. J., , and M. D. Shulski, 2014: Climatology and trends of wind speed in the Beaufort/Chukchi Sea coastal region from 1979 to 2009. Int. J. Climatol., 34, 2819–2833, doi:10.1002/joc.3881.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., , and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161, doi:10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1989: An extraordinary katabatic wind regime at Terra Nova Bay, Antarctica. Mon. Wea. Rev., 117, 688695, doi:10.1175/1520-0493(1989)117<0688:AEKWRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , J. J. Cassano, , T. Klein, , G. Heinemann, , K. M. Hines, , K. Steffen, , and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129, 2290–2309, doi:10.1175/1520-0493(2001)129<2290:MMOKWO>2.0.CO;2.

  • Comiso, J. C., , C. L. Parkinson, , R. Gersten, , and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Dalu, G. A., , and R. A. Pielke, 1989: An analytical study of the sea breeze. J. Atmos. Sci., 46, 18151825, doi:10.1175/1520-0469(1989)046<1815:AASOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Kozo, T., 1979: Evidence for sea breezes on the Alaskan Beaufort Sea Coast. Geophys. Res. Lett., 6, 849852, doi:10.1029/GL006i011p00849.

    • Search Google Scholar
    • Export Citation
  • Kozo, T., 1980: Mountain barrier baroclinity effects on surface winds along the Alaskan Arctic Coast. Geophys. Res. Lett., 7, 377380, doi:10.1029/GL007i005p00377.

    • Search Google Scholar
    • Export Citation
  • Liu, F., , J. R. Krieger, , and J. Zhang, 2014: Toward producing the Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR) via the WRFDA data assimilation system. Mon. Wea. Rev., 142, 788805, doi:10.1175/MWR-D-13-00063.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , P. Q. Olsson, , K. P. Volz, , and H. Yi, 2006: A climatology of mesoscale model simulated low-level wind jets over Cook Inlet and Shelikof Strait, Alaska. Estuarine Coastal Shelf Sci., 70, 551566, doi:10.1016/j.ecss.2006.06.011.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , P. Q. Olsson, , and K. Volz, 2008: SAR observation and modeling of gap winds in the Prince William Sound of Alaska. Sensors, 8, 48944914, doi:10.3390/s8084894.

    • Search Google Scholar
    • Export Citation
  • Loescher, K., , A. G. Young, , B. A. Colle, , and N. S. Winstead, 2006: Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134, 437453, doi:10.1175/MWR3037.1.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., , B. D. Keim, , R. W. Talbot, , and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

  • Moore, G. W. K., 2012: Decadal variability and a recent amplification of the summer Beaufort Sea High. Geophys. Res. Lett., 39, L10807, doi:10.1029/2012GL051570.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., , and R. S. Pickart, 2012: Northern Bering Sea tip jets. Geophys. Res. Lett., 39, L08807, doi:10.1029/2012GL051537.

  • Overland, J. E., 2009: Meteorology of the Beaufort Sea. J. Geophys. Res., 114, C00A07, doi:10.1029/2008JC004861.

  • Parish, T. R., 1982: Barrier winds along the Sierra Nevada Mountains. J. Appl. Meteor., 21, 925930, doi:10.1175/1520-0450(1982)021<0925:BWATSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , and D. H. Bromwich, 1987: The surface windfield over the Antarctic ice sheets. Nature, 328, 5154, doi:10.1038/328051a0.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , and D. H. Bromwich, 1991: Continental-scale simulation of the Antarctic katabatic wind regime. J. Climate, 4, 135146, doi:10.1175/1520-0442(1991)004<0135:CSSOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., , and J. J. Cassano, 2003: The role of katabatic winds on the Antarctic surface wind regime. Mon. Wea. Rev., 131, 317–333, doi:10.1175/1520-0493(2003)131<0317:TROKWO>2.0.CO;2.

  • Pickart, R. S., , G. W. K. Moore, , D. J. Torres, , P. S. Fratantoni, , R. A. Goldsmith, , and J. Yang, 2009: Upwelling on the continental slope of the Alaskan Beaufort Sea: Storms, ice, and oceanographic response. J. Geophys. Res., 114, C00A13, doi:10.1029/2008JC005009.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., , and M. Segal, 1986: Mesoscale circulations forced by differential terrain heating. Mesoscale Meteorology and Forecasting, P. Ray, Ed., Amer. Meteor. Soc., 516–548, doi:10.1007/978-1-935704-20-1_22.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, doi:10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwerdtfeger, W., 1974: Mountain barrier effect on the flow of stable air north of the Brooks Range. Proc. 24th Alaskan Science Conf., Fairbanks, AK, University of Alaska Fairbanks, 204208.

  • Serreze, M. C., , and R. G. Barry, 2005: The Arctic Climate System. Cambridge University Press, 404 pp.

  • Serreze, M. C., , and A. P. Barrett, 2008: The summer cyclone maximum over the central Arctic Ocean. J. Climate, 21, 10481065, doi:10.1175/2007JCLI1810.1.

    • Search Google Scholar
    • Export Citation
  • Shulski, M., , and G. Wendler, 2007: Climate of Alaska. University of Alaska Press, 216 pp.

  • Simpson, J. E., 1994: Sea Breeze and Local Winds. Cambridge University Press, 252 pp.

  • Stegall, S. T., , and J. Zhang, 2012: Wind field climatology, changes, and extremes in the Chukchi–Beaufort Seas and Alaska North Slope during 1979–2009. J. Climate, 25, 80758089, doi:10.1175/JCLI-D-11-00532.1.

    • Search Google Scholar
    • Export Citation
  • Stow, D. A., and et al. , 2004: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ., 89, 281308, doi:10.1016/j.rse.2003.10.018.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , M. M. Holland, , W. Meier, , T. Scambos, , and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Tao, W., , J. Zhang, , X. Zhang, , and J. Chen, 2016: Arctic storm and its impacts on surface winds over the Chukchi–Beaufort Seas. Proc. 2013 National Conf. on Advances in Environmental Science and Technology, Greensboro, NC, North Carolina A&T State University, 21–34, doi:10.1007/978-3-319-19923-8_3.

  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., , M. J. Miller, , and M. W. Moncrieff, 1980: Dynamical models of two-dimensional downdraughts. Quart. J. Roy. Meteor. Soc., 106, 463484, doi:10.1002/qj.49710644906.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , and W. R. Cotton, 1989: Numerical study of an observed mesoscale convective system. Part I: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273304, doi:10.1175/1520-0493(1989)117<0273:NSOAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 1974: Sea breeze theory and applications. J. Atmos. Sci., 31, 20122026, doi:10.1175/1520-0469(1974)031<2012:SBTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolyn, P. G., , and T. B. McKee, 1994: The mountain-plains circulation east of a 2-km-high north–south barrier. Mon. Wea. Rev., 122, 14901508, doi:10.1175/1520-0493(1994)122<1490:TMPCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., , J. Zhang, , X. Zhang, , and W. Tao, 2014: Interannual variability and long-term changes of atmospheric circulation over the Chukchi and Beaufort Seas. J. Climate, 27, 48714889, doi:10.1175/JCLI-D-13-00610.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., , S. Gao, , and B. H. Fiedler, 1996: A theoretical study of cold air damming with upstream cold air flow. J. Atmos. Sci., 53, 312326, doi:10.1175/1520-0469(1996)053<0312:ATSOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , J. E. Walsh, , J. Zhang, , U. S. Bhatt, , and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, doi:10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , A. Sorteberg, , J. Zhang, , R. Gerdes, , and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, doi:10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and et al. , 2013: Beaufort and Chukchi Seas Mesoscale Meteorology Modeling Study, final project report. Bureau of Ocean Energy Management Tech. Rep. BOEM 2013-0119, 204 pp. [Available online at http://www.boem.gov/BOEM-2013-0119/.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 9
PDF Downloads 59 59 11

Mesoscale Climatology and Variation of Surface Winds over the Chukchi–Beaufort Coastal Areas

View More View Less
  • 1 Department of Physics, and Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina
  • | 2 Department of Energy and Environmental Systems, North Carolina A&T State University, Greensboro, North Carolina
  • | 3 Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 4 High Plains Regional Climate Center, School of Natural Resources, University of Nebraska–Lincoln, Lincoln, Nebraska
  • | 5 International Arctic Research Center, Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska
© Get Permissions
Restricted access

Abstract

The detailed mesoscale climatology of surface winds in the Chukchi–Beaufort Seas and adjacent Arctic Slope region is analyzed using the recently developed Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR). Within the study area, surface winds are mainly driven by the prevailing synoptic weather patterns of the Beaufort high and Aleutian low and are further modulated by local geographic features through thermodynamic and dynamic processes. Sea breezes, up- or downslope winds, and the mountain barrier jets are all clearly captured by CBHAR. Sea breezes emerge in June–September and last most of the day, with a maximum spatial extent 100 km inland and 50 km offshore and maximum speed around 1–3 m s−1 in the late afternoon [~1500 Alaska standard time (AKST)]. Thermodynamic impacts of mountains on the surface winds vary from time to time. Drainage flows begin to build at the mountaintop in September and reach the strongest during November–February, occupying the entire slope. Upslope winds demonstrate a clear diurnal cycle during summer, starting to build around 0900 local time, reaching the maximum strength around 1500 local time and continuing until 2100 local time. The mountain barrier jets (MBJs) are found to be most active around the Chukotka Mountains during cold seasons. Both sea breezes and MBJs are also subject to variations and changes in response to adjusted large-scale atmosphere circulation. Storm activities can inhibit the development of sea breezes. Different responses from the Beaufort high and Aleutian low to anomalies in large-scale circulations play a vital role in the variations of MBJ activities over the Chukotka Mountains.

Corresponding author address: Jing Zhang, Department of Physics, and Department of Environmental and Energy Systems, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC 27411. E-mail: jzhang1@ncat.edu

Abstract

The detailed mesoscale climatology of surface winds in the Chukchi–Beaufort Seas and adjacent Arctic Slope region is analyzed using the recently developed Chukchi–Beaufort High-Resolution Atmospheric Reanalysis (CBHAR). Within the study area, surface winds are mainly driven by the prevailing synoptic weather patterns of the Beaufort high and Aleutian low and are further modulated by local geographic features through thermodynamic and dynamic processes. Sea breezes, up- or downslope winds, and the mountain barrier jets are all clearly captured by CBHAR. Sea breezes emerge in June–September and last most of the day, with a maximum spatial extent 100 km inland and 50 km offshore and maximum speed around 1–3 m s−1 in the late afternoon [~1500 Alaska standard time (AKST)]. Thermodynamic impacts of mountains on the surface winds vary from time to time. Drainage flows begin to build at the mountaintop in September and reach the strongest during November–February, occupying the entire slope. Upslope winds demonstrate a clear diurnal cycle during summer, starting to build around 0900 local time, reaching the maximum strength around 1500 local time and continuing until 2100 local time. The mountain barrier jets (MBJs) are found to be most active around the Chukotka Mountains during cold seasons. Both sea breezes and MBJs are also subject to variations and changes in response to adjusted large-scale atmosphere circulation. Storm activities can inhibit the development of sea breezes. Different responses from the Beaufort high and Aleutian low to anomalies in large-scale circulations play a vital role in the variations of MBJ activities over the Chukotka Mountains.

Corresponding author address: Jing Zhang, Department of Physics, and Department of Environmental and Energy Systems, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC 27411. E-mail: jzhang1@ncat.edu
Save