• Anderson, J., and et al. , 2004: The New GFDL Global Atmosphere and Land Model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J., , S.-I. Shin, , and P. D. Sardeshmukh, 2005: Tropical climate regimes and global climate sensitivity in a simple setting. J. Atmos. Sci., 62, 12261240, doi:10.1175/JAS3404.1.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., , and H. H. Hendon, 2000a: Cloud radiative forcing of the low-latitude tropospheric circulation: Linear calculations. J. Atmos. Sci., 57, 22252245, doi:10.1175/1520-0469(2000)057<2225:CRFOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., , and H. H. Hendon, 2000b: The impact of clouds on the seasonal cycle of radiative heating over the Pacific. J. Atmos. Sci., 57, 545566, doi:10.1175/1520-0469(2000)057<0545:TIOCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and J. M. Fritsch, 2004: A reevaluation of ice-liquid water potential temperature. Mon. Wea. Rev., 132, 24212431, doi:10.1175/1520-0493(2004)132<2421:AROIWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., , and B. Chen, 2004: Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Climate Dyn., 22, 447459, doi:10.1007/s00382-003-0387-4.

    • Search Google Scholar
    • Export Citation
  • Collins, W., and et al. , 2008: Evaluation of HadGEM2 model. Met Office Hadley Centre Tech. Note 74, 47 pp.

  • Crueger, T., , and B. Stevens, 2015: The effect of atmospheric radiative heating by clouds on the Madden–Julian oscillation. J. Adv. Model. Earth Syst., 7, 854864, doi:10.1002/2015MS000434.

    • Search Google Scholar
    • Export Citation
  • Dahms, E., , H. Borth, , F. Lunkeit, , and K. Fraedrich, 2011: ITCZ splitting and the influence of large-scale eddy fields on the tropical mean state. J. Meteor. Soc. Japan, 89, 399411, doi:10.2151/jmsj.2011-501.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , and Y. Chen, 2015: Cloud-radiative driving of the Madden–Julian oscillation as seen by the A-Train. J. Geophys. Res. Atmos., 120, 53445356, doi:10.1002/2015JD023278.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Fermepin, S., , and S. Bony, 2014: Influence of low-cloud radiative effects on tropical circulation and precipitation. J. Adv. Model. Earth Syst., 6, 513526, doi:10.1002/2013MS000288.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, doi:10.1017/CBO9781107415324.020.

  • Harrop, B. E., , and D. L. Hartmann, 2012: Testing the role of radiation in determining tropical cloud-top temperature. J. Climate, 25, 57315747, doi:10.1175/JCLI-D-11-00445.1.

    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., , and D. L. Hartmann, 2015: The relationship between atmospheric convective radiative effect and net energy transport in the tropical warm pool. J. Climate, 28, 86208633, doi:10.1175/JCLI-D-15-0151.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hartmann, D. L., , J. R. Holton, , and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972, doi:10.1029/2000GL012833.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , R. Neale, , M. Rodwell, , and G.-Y. Yang, 1999: Aspects of the large-scale tropical atmospheric circulation. Tellus, 51B, 3344, doi:10.1034/j.1600-0889.1999.00004.x.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and et al. , 2013a: Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dyn., 40, 21672192, doi:10.1007/s00382-012-1411-3.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and et al. , 2013b: LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dyn., 40, 21932222, doi:10.1007/s00382-012-1343-y.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , and A. K. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541576, doi:10.1029/RG019i004p00541.

  • Hubert, L. F., , A. F. Krueger, , and J. S. Winston, 1969: The double intertropical convergence zone—Fact or fiction? J. Atmos. Sci., 26, 771773, doi:10.1175/1520-0469(1969)026<0771:TDICZF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., , J. S. Delamere, , E. J. Mlawer, , M. W. Shephard, , S. A. Clough, , and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., , and D. L. Hartmann, 2007: Testing the fixed anvil temperature hypothesis in a cloud-resolving model. J. Climate, 20, 20512057, doi:10.1175/JCLI4124.1.

    • Search Google Scholar
    • Export Citation
  • Landu, K., , L. R. Leung, , S. Hagos, , V. Vinoj, , S. A. Rauscher, , T. Ringler, , and M. Taylor, 2014: The dependence of ITCZ structure on model resolution and dynamical core in aquaplanet simulations. J. Climate, 27, 23752385, doi:10.1175/JCLI-D-13-00269.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S., , and C. Yoo, 2014: On the causal relationship between poleward heat flux and the equator-to-pole temperature gradient: A cautionary tale. J. Climate, 27, 65196525, doi:10.1175/JCLI-D-14-00236.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and S. P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , D. W. J. Thompson, , and S. Bony, 2015: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 72637278, doi:10.1175/JCLI-D-14-00825.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and M. W. Moncrieff, 2008: Explicitly simulated tropical convection over idealized warm pools. J. Geophys. Res., 113, D21121, doi:10.1029/2008JD010206.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , L. Guo, , G. Wu, , and Z. Wang, 2010: Sensitivity of ITCZ configuration to cumulus convective parameterizations on an aqua planet. Climate Dyn., 34, 223240, doi:10.1007/s00382-009-0652-2.

    • Search Google Scholar
    • Export Citation
  • Lopez, M. A., , D. L. Hartmann, , P. N. Blossey, , R. Wood, , C. S. Bretherton, , and T. L. Kubar, 2009: A test of the simulation of tropical convective cloudiness by a cloud-resolving model. J. Climate, 22, 28342849, doi:10.1175/2008JCLI2272.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The nature and theory of the general circulation of the atmosphere. WMO Bull., 16, 74–78.

  • Mechoso, C., and et al. , 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 28252838, doi:10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , B. Stevens, , I. M. Held, , M. Zhao, , D. L. Williamson, , J. G. Olson, , and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991, doi:10.1175/2008JCLI1995.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , B. Stevens, , and S. Bony, 2015: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dyn., 44, 19571977, doi:10.1007/s00382-014-2138-0.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2015: Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc. Natl. Acad. Sci. USA, 112, 13 16713 171, doi:10.1073/pnas.1508268112.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , H. Tomita, , T. Nasuno, , S. I. Iga, , M. Satoh, , and T. Matsuno, 2005: A climate sensitivity test using a global cloud resolving model under an aqua planet condition. Geophys. Res. Lett., 32, L19717, doi:10.1029/2005GL023672.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Möbis, B., , and B. Stevens, 2012: Factors controlling the position of the intertropical convergence zone on an aquaplanet. J. Adv. Model. Earth Syst., 4, M00A04, doi:10.1029/2012MS000199.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, doi:10.1006/asle.2000.0022.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , C. Chou, , and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30, 2275, doi:10.1029/2003GL018625.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50, 18741887, doi:10.1175/1520-0469(1993)050<1874:DAEBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oueslati, B., , and G. Bellon, 2013a: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. J. Climate, 26, 29312946, doi:10.1175/JCLI-D-12-00314.1.

    • Search Google Scholar
    • Export Citation
  • Oueslati, B., , and G. Bellon, 2013b: Tropical precipitation regimes and mechanisms of regime transitions: Contrasting two aquaplanet general circulation models. Climate Dyn., 40, 23452358, doi:10.1007/s00382-012-1344-x.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1987: The role of Earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92, 40754095, doi:10.1029/JD092iD04p04075.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , D. A. Dazlich, , and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, doi:10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: The Hadley circulation as a radiative–convective instability. J. Atmos. Sci., 57, 12861297, doi:10.1175/1520-0469(2000)057<1286:THCAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , V. Ramanathan, , T. P. Barnett, , M. K. Tyree, , and E. Roeckner, 1994: Response of an atmospheric general circulation model to radiative forcing of tropical clouds. J. Geophys. Res., 99, 20 82920 845, doi:10.1029/94JD01632.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., , and J. M. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 10271062, doi:10.1002/qj.49711448209.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., , and A. Slingo, 1991: The response of a general circulation model to cloud longwave radiative forcing. II: Further studies. Quart. J. Roy. Meteor. Soc., 117, 333364, doi:10.1002/qj.49711749805.

    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., 1999: Cloud-induced infrared radiative heating and its implications for large-scale tropical circulations. J. Atmos. Sci., 56, 26572672, doi:10.1175/1520-0469(1999)056<2657:CIIRHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , S. Bony, , and M. Webb, 2012: Clouds On-Off Klimate Intercomparison Experiment (COOKIE). 12 pp. [Available online at http://hdl.handle.net/11858/00-001M-0000-0024-580A-3.]

  • Stevens, B., and et al. , 2013: Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., , and G. L. Smith, 1988a: A study of cloud-generated radiative heating and its generation of available potential energy. Part I: Theoretical background. J. Atmos. Sci., 45, 39113927, doi:10.1175/1520-0469(1988)045<3911:ASOCRH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., , and G. L. Smith, 1988b: A study of cloud-generated radiative heating and its generation of available potential energy. Part II: Results for a climatological zonal mean January. J. Atmos. Sci., 45, 39283943, doi:10.1175/1520-0469(1988)045<3928:ASOCGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., 2015: Spread of model climate sensitivity linked to double–intertropical convergence zone bias. Geophys. Res. Lett., 42, 41334141, doi:10.1002/2015GL064119.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , and V. Ramanathan, 2002: Role of tropical clouds in surface and atmospheric energy budget. J. Climate, 15, 296305, doi:10.1175/1520-0442(2002)015<0296:ROTCIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , and V. Ramanathan, 2003: A simple moist tropical atmosphere model: The role of cloud radiative forcing. J. Climate, 16, 20862092, doi:10.1175/1520-0442(2003)016<2086:ASMTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , G. J. Zhang, , and V. Ramanathan, 2001: Heat balance in the Pacific warm pool atmosphere during TOGA COARE and CEPEX. J. Climate, 14, 18811893, doi:10.1175/1520-0442(2001)014<1881:HBITPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., , and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, doi:10.1038/ngeo2345.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., , S. Bony, , J.-L. Dufresne, , and B. Stevens, 2014: The radiative impact of clouds on the shift of the intertropical convergence zone. Geophys. Res. Lett., 41, 43084315, doi:10.1002/2014GL060354.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Wofsy, J., , and Z. Kuang, 2012: Cloud-resolving model simulations and a simple model of an idealized Walker cell. J. Climate, 25, 80908107, doi:10.1175/JCLI-D-11-00692.1.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and et al. , 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3: Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M., , and D. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

  • Zhang, C., 2001: Double ITCZs. J. Geophys. Res., 106, 11 78511 792, doi:10.1029/2001JD900046.

  • Zhang, Y.-C., , and W. B. Rossow, 1997: Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10, 23582373, doi:10.1175/1520-0442(1997)010<2358:EMETBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 10
PDF Downloads 74 74 9

The Role of Cloud Radiative Heating in Determining the Location of the ITCZ in Aquaplanet Simulations

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The relationship between the tropical circulation and cloud radiative effect is investigated. Output from the Clouds On–Off Klimate Intercomparison Experiment (COOKIE) is used to examine the impact of cloud radiative effects on circulation and climate. In aquaplanet simulations with a fixed SST pattern, the cloud radiative effect leads to an equatorward contraction of the intertropical convergence zone (ITCZ) and a reduction of the double ITCZ problem. It is shown that the cloud radiative heating in the upper troposphere increases the temperature, weakens CAPE, and inhibits the onset of convection until it is closer to the equator, where SSTs are higher. Precipitation peaks at higher values in a narrower band when the cloud radiative effects are active, compared to when they are inactive, owing to the enhancement in moisture convergence. Additionally, cloud–radiation interactions strengthen the mean meridional circulation and consequently enhance the moisture convergence. Although the mean tropical precipitation decreases, the atmospheric cloud radiative effect has a strong meridional gradient, which supports stronger poleward energy flux and speeds up the Hadley circulation. Cloud radiative heating also enhances cloud water path (liquid plus ice), which, combined with the reduction in precipitation, suggests that the cloud radiative heating reduces precipitation efficiency in these models.

Corresponding author address: Bryce E. Harrop, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: beharrop@u.washington.edu

Abstract

The relationship between the tropical circulation and cloud radiative effect is investigated. Output from the Clouds On–Off Klimate Intercomparison Experiment (COOKIE) is used to examine the impact of cloud radiative effects on circulation and climate. In aquaplanet simulations with a fixed SST pattern, the cloud radiative effect leads to an equatorward contraction of the intertropical convergence zone (ITCZ) and a reduction of the double ITCZ problem. It is shown that the cloud radiative heating in the upper troposphere increases the temperature, weakens CAPE, and inhibits the onset of convection until it is closer to the equator, where SSTs are higher. Precipitation peaks at higher values in a narrower band when the cloud radiative effects are active, compared to when they are inactive, owing to the enhancement in moisture convergence. Additionally, cloud–radiation interactions strengthen the mean meridional circulation and consequently enhance the moisture convergence. Although the mean tropical precipitation decreases, the atmospheric cloud radiative effect has a strong meridional gradient, which supports stronger poleward energy flux and speeds up the Hadley circulation. Cloud radiative heating also enhances cloud water path (liquid plus ice), which, combined with the reduction in precipitation, suggests that the cloud radiative heating reduces precipitation efficiency in these models.

Corresponding author address: Bryce E. Harrop, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: beharrop@u.washington.edu
Save