• Ackerman, A. S., 2000: Reduction of tropical cloudiness by soot. Science, 288, 10421047, doi:10.1126/science.288.5468.1042.

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Bala, G., , K. Caldeira, , and R. Nemani, 2010: Fast versus slow response in climate change: Implications for the global hydrological cycle. Climate Dyn., 35, 423434, doi:10.1007/s00382-009-0583-y.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., , Y. Ming, , and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., , Y. Ming, , V. Ramaswamy, , M. D. Schwarzkopf, , and V. Naik, 2014: Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian monsoon. Geophys. Res. Lett., 41, 680687, doi:10.1002/2013GL058183.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., , N. J. Dunstone, , P. R. Halloran, , T. Andrews, , and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., , and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., , V. Ramanathan, , and J. T. Kiehl, 2002: Effects of the South Asian absorbing haze on the northeast monsoon and surface–air heat exchange. J. Climate, 15, 24622476, doi:10.1175/1520-0442(2002)015<2462:EOTSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. B., , and C. Wang, 2014: Estimating global black carbon emissions using a top-down Kalman filter approach. J. Geophys. Res. Atmos., 119, 307323, doi:10.1002/2013JD019912.

    • Search Google Scholar
    • Export Citation
  • Cowan, T., , and W. Cai, 2011: The impact of Asian and non-Asian anthropogenic aerosols on 20th century Asian summer monsoon. Geophys. Res. Lett., 38, L11703, doi:10.1029/2011GL047268.

    • Search Google Scholar
    • Export Citation
  • Dentener, F., and et al. , 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys., 6, 43214344, doi:10.5194/acp-6-4321-2006.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , R. T. Sutton, , E. Highwood, , and L. Wilcox, 2014: The impacts of European and Asian anthropogenic sulfur dioxide emissions on Sahel rainfall. J. Climate, 27, 70007017, doi:10.1175/JCLI-D-13-00769.1.

    • Search Google Scholar
    • Export Citation
  • Fiore, A. M., and et al. , 2012: Global air quality and climate. Chem. Soc. Rev., 41, 66636683, doi:10.1039/c2cs35095e.

  • Ganguly, D., , P. J. Rasch, , H. Wang, , and J.-H. Yoon, 2012: Climate response of the South Asian monsoon system to anthropogenic aerosols. J. Geophys. Res., 117, D13209, doi:10.1029/2012JD017508.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and et al. , 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , X. Liu, , D. Barahona, , U. Lohmann, , and C. Chen, 2012: Climate impacts of ice nucleation. J. Geophys. Res., 117, D20201, doi:10.1029/2012JD017950.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., 2013: Technical note: Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys., 13, 99719974, doi:10.5194/acp-13-9971-2013.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., , X. Liu, , R. C. Easter, , R. Zaveri, , P. J. Rasch, , J.-H. Yoon, , and B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 64616476, doi:10.1175/JCLI-D-11-00650.1.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., , K. N. Liou, , Y. Xue, , C. R. Mechoso, , W. Li, , and Y. Luo, 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111, D15201, doi:10.1029/2005JD006312.

    • Search Google Scholar
    • Export Citation
  • Guo, L., , E. J. Highwood, , L. C. Shaffrey, , and G. Turner, 2013: The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian summer monsoon. Atmos. Chem. Phys., 13, 15211534, doi:10.5194/acp-13-1521-2013.

    • Search Google Scholar
    • Export Citation
  • Haywood, J., , and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513543, doi:10.1029/1999RG000078.

    • Search Google Scholar
    • Export Citation
  • Haywood, J., , L. Donner, , A. Jones, , and J.-C. Golaz, 2009: Global indirect radiative forcing caused by aerosols: IPCC (2007) and beyond. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. Charlson, Eds., MIT Press, 451–467.

  • Haywood, J., , A. Jones, , N. Bellouin, , and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Climate Change, 3, 660665, doi:10.1038/nclimate1857.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., , X. Liu, , X.-Q. Yang, , and M. Wang, 2013: A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos. Environ., 70, 5163, doi:10.1016/j.atmosenv.2012.12.039.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., , G. P. Kyle, , M. Meinshausen, , K. Riahi, , S. J. Smith, , D. P. van Vuuren, , A. J. Conley, , and F. Vitt, 2011: Global and regional evolution of short-lived radiatively active gases and aerosols in the representative concentration pathways. Climatic Change, 109, 191212, doi:10.1007/s10584-011-0155-0.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , M. K. Kim, , and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, doi:10.1007/s00382-006-0114-z.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-Y., , and C. Wang, 2015: The response of the South Asian summer monsoon to temporal and spatial variations in absorbing aerosol radiative forcing. J. Climate, 28, 66266646, doi:10.1175/JCLI-D-14-00609.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-Y., , H.-J. Shin, , and C. Wang, 2013: Nonlinear effects of coexisting surface and atmospheric forcing of anthropogenic absorbing aerosols: Impact on the South Asian monsoon onset. J. Climate, 26, 55945607, doi:10.1175/JCLI-D-12-00741.1.

    • Search Google Scholar
    • Export Citation
  • Levy, H., , L. W. Horowitz, , M. D. Schwarzkopf, , Y. Ming, , J.-C. Golaz, , V. Naik, , and V. Ramaswamy, 2013: The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res. Atmos., 118, 45214532, doi:10.1002/jgrd.50192.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , X. Xie, , Z.-Y. Yin, , C. Liu, , and A. Gettelman, 2011: A modeling study of the effects of aerosols on clouds and precipitation over East Asia. Theor. Appl. Climatol., 106, 343354, doi:10.1007/s00704-011-0436-6.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and et al. , 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, doi:10.5194/gmd-5-709-2012.

    • Search Google Scholar
    • Export Citation
  • Lu, Z., , Q. Zhang, , and D. G. Streets, 2011: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos. Chem. Phys., 11, 98399864, doi:10.5194/acp-11-9839-2011.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , and W. D. Collins, 2008: Effects of black carbon aerosols on the Indian monsoon. J. Climate, 21, 28692882, doi:10.1175/2007JCLI1777.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2013: Climate change projections in CESM1(CAM5) compared to CCSM4. J. Climate, 26, 62876308, doi:10.1175/JCLI-D-12-00572.1.

    • Search Google Scholar
    • Export Citation
  • Menon, S., , J. Hansen, , L. Nazarenko, , and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, doi:10.1126/science.1075159.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note TN-486+STR, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Pithan, F., , and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Pu, B., , and K. H. Cook, 2012: Role of the West African westerly jet in Sahel rainfall variations. J. Climate, 25, 28802896, doi:10.1175/JCLI-D-11-00394.1.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and et al. , 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA, 102, 53265333, doi:10.1073/pnas.0500656102.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , S. J. Jeffrey, , M. A. Collier, , S. M. Dravitzki, , A. C. Hirst, , J. I. Syktus, , and K. K. Wong, 2012: Aerosol- and greenhouse gas–induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys., 12, 63776404, doi:10.5194/acp-12-6377-2012.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., , M. A. Collier, , A. Chrastansky, , S. J. Jeffrey, , and J.-J. Luo, 2013: Projected effects of declining aerosols in RCP4.5: Unmasking global warming? Atmos. Chem. Phys., 13, 10 88310 905, doi:10.5194/acp-13-10883-2013.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and et al. , 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Steckel, J. C., , O. Edenhofer, , and M. Jakob, 2015: Drivers for the renaissance of coal. Proc. Natl. Acad. Sci. USA, 112, E3775E3781, doi:10.1073/pnas.1422722112.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., , J. P. Chen, , Z. Li, , C. Wang, , and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Teng, H., , W. M. Washington, , G. Branstator, , G. A. Meehl, , and J.-F. Lamarque, 2012: Potential impacts of Asian carbon aerosols on future US warming. Geophys. Res. Lett., 39, L11703, doi:10.1029/2012GL051723.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, doi:10.1016/0004-6981(74)90004-3.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • U.S. Energy Information Administration, 2013: Technically Recoverable Shale Oil And Shale Gas Resources: An assessment of 137 shale formations in 41 countries outside the United States. Accessed 16 October 2013. [Available online at http://www.eia.gov/analysis/studies/worldshalegas/.]

  • van Vuuren, D. P., and et al. , 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res., 109, D03106, doi:10.1029/2003JD004084.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2007: Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys. Res. Lett., 34, L05709, doi:10.1029/2006GL028416.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2009: The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions. Ann. Geophys., 27, 37053711, doi:10.5194/angeo-27-3705-2009.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2013: Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent progresses. Atmos. Res., 122, 237249, doi:10.1016/j.atmosres.2012.11.005.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2015: Anthropogenic aerosols and the distribution of past large-scale precipitation change. Geophys. Res. Lett., 42, 10 87610 884, doi:10.1002/2015GL066416.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , D. Kim, , A. M. L. Ekman, , M. C. Barth, , and P. J. Rasch, 2009: Impact of anthropogenic aerosols on Indian summer monsoon. Geophys. Res. Lett., 36, L21704, doi:10.1029/2009GL040114.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Zhao, Y., , S. Wang, , C. P. Nielsen, , X. Li, , and J. Hao, 2010: Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants. Atmos. Environ., 44, 15151523, doi:10.1016/j.atmosenv.2010.01.017.

    • Search Google Scholar
    • Export Citation
  • Zhi, G., , C. Peng, , Y. Chen, , D. Liu, , G. Sheng, , and J. Fu, 2009: Deployment of coal briquettes and improved stoves: Possibly an option for both environment and climate. Environ. Sci. Technol., 43, 55865591, doi:10.1021/es802955d.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 23
PDF Downloads 38 38 16

Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

View More View Less
  • 1 Center for Environmental Sensing and Modeling, Singapore–MIT Alliance for Research and Technology, Singapore
  • | 2 Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

Fuel usage is an important driver of anthropogenic aerosol emissions. In Asia, it is possible that aerosol emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly as a result of the widespread adoption of cleaner technologies or a shift toward noncoal fuels, such as natural gas. In this study, the transient climate impacts of two aerosol emissions scenarios are investigated: a representative concentration pathway 4.5 (RCP4.5) control, which projects a decrease in anthropogenic aerosol emissions, and a scenario with enhanced anthropogenic aerosol emissions from Asia. A coupled atmosphere–ocean configuration of the Community Earth System Model (CESM), including the Community Atmosphere Model, version 5 (CAM5), is used. Three sets of initial conditions are used to produce a three-member ensemble for each scenario. Enhanced Asian aerosol emissions are found to exert a large cooling effect across the Northern Hemisphere, partially offsetting greenhouse gas–induced warming. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world. Over Australia, austral summer monsoon precipitation is enhanced, an effect associated with a southward shift of the intertropical convergence zone, driven by the aerosol-induced cooling of the Northern Hemisphere. Over the Sahel, West African monsoon precipitation is suppressed, likely via a weakening of the West African westerly jet. These results indicate that fuel usage in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0555.s1.

Additional affiliation: Center for Environmental Sensing and Modeling, Singapore–MIT Alliance for Research and Technology, Singapore.

Corresponding author address: Benjamin S. Grandey, 1 CREATE Way, #09-03 CREATE Tower, Singapore 138602, Singapore. E-mail: benjamin@smart.mit.edu

Abstract

Fuel usage is an important driver of anthropogenic aerosol emissions. In Asia, it is possible that aerosol emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly as a result of the widespread adoption of cleaner technologies or a shift toward noncoal fuels, such as natural gas. In this study, the transient climate impacts of two aerosol emissions scenarios are investigated: a representative concentration pathway 4.5 (RCP4.5) control, which projects a decrease in anthropogenic aerosol emissions, and a scenario with enhanced anthropogenic aerosol emissions from Asia. A coupled atmosphere–ocean configuration of the Community Earth System Model (CESM), including the Community Atmosphere Model, version 5 (CAM5), is used. Three sets of initial conditions are used to produce a three-member ensemble for each scenario. Enhanced Asian aerosol emissions are found to exert a large cooling effect across the Northern Hemisphere, partially offsetting greenhouse gas–induced warming. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world. Over Australia, austral summer monsoon precipitation is enhanced, an effect associated with a southward shift of the intertropical convergence zone, driven by the aerosol-induced cooling of the Northern Hemisphere. Over the Sahel, West African monsoon precipitation is suppressed, likely via a weakening of the West African westerly jet. These results indicate that fuel usage in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0555.s1.

Additional affiliation: Center for Environmental Sensing and Modeling, Singapore–MIT Alliance for Research and Technology, Singapore.

Corresponding author address: Benjamin S. Grandey, 1 CREATE Way, #09-03 CREATE Tower, Singapore 138602, Singapore. E-mail: benjamin@smart.mit.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.74 MB)
Save