• Barnston, A. G., 1994: Linear statistical short-term climate predictive skill in the Northern Hemisphere. J. Climate, 7, 15131564, doi:10.1175/1520-0442(1994)007<1513:LSSTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiani, M., 2014: Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy–Widom distribution. J. Multivar. Anal., 129, 6981, doi:10.1016/j.jmva.2014.04.002.

    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., , and M. B. Richman, 2008: Can principal component analysis provide atmospheric circulation or teleconnection patterns? Int. J. Climatol., 28, 703726, doi:10.1002/joc.1574.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Faber, N. M., , L. M. C. Buydens, , and G. Kateman, 1994: Aspects of pseudorank estimation methods based on the eigenvalues of principal component analysis of random matrices. Chemom. Intell. Lab. Syst., 25, 203226, doi:10.1016/0169-7439(94)85043-7.

    • Search Google Scholar
    • Export Citation
  • Feng, J., , Q. Wang, , S. Hu, , and D. Hu, 2016: Intraseasonal variability of the tropical Pacific subsurface temperature in the two flavours of El Niño. Int. J. Climatol., 36, 867884, doi:10.1002/joc.4389.

    • Search Google Scholar
    • Export Citation
  • Golub, G. H., , and C. F. Van Loan, 1983: Matrix Computations. John Hopkins Press, 476 pp.

  • Johnstone, I. M., 2001: On the distribution of the largest eigenvalue in principal component analysis. Ann. Stat., 29, 295327, doi:10.1214/aos/1009210544.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2002: Principal Component Analysis. Springer, 487 pp.

  • Kritchman, S., , and B. Nadler, 2008: Determining the number of components in a factor model from limited noisy data. Chemom. Intell. Lab. Syst., 94, 1932, doi:10.1016/j.chemolab.2008.06.002.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Science Rep. 1, Statistical Forecasting Project, Department of Meteorology, MIT (NTIS AD 110268), 49 pp.

  • Obukhov, A. M., 1947: Statistically homogeneous fields on a sphere. Uspethi Math. Nauk, 2, 196198.

  • Ortega, P., , F. Lehner, , D. Swingedouw, , V. Masson-Delmotte, , C. C. Raible, , M. Casado, , and P. Yiou, 2015: A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature, 523, 7177, doi:10.1038/nature14518.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and R. W. Preisendorfer, 1982: A significance test for principal components applied to a cyclone climatology. Mon. Wea. Rev., 110, 14, doi:10.1175/1520-0493(1982)110<0001:ASTFPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pérez-Hernández, M., , and T. M. Joyce, 2014: Two modes of Gulf Stream variability revealed in the last two decades of satellite altimeter data. J. Phys. Oceanogr., 44, 149163, doi:10.1175/JPO-D-13-0136.1.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., , and C. D. Mobley, 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Preisendorfer, R. W., , F. W. Zwiers, , and T. P. Barnett, 1981: Foundations of Principal Component Selection Rules. SIO Reference Series 81-4, Scripps Institution of Oceanography, 192 pp.

  • Tracy, C. A., , and H. Widom, 1996: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys., 177, 727754, doi:10.1007/BF02099545.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , R. M. Castelao, , and Y. Yuan, 2015: Seasonal variability of alongshore winds and sea surface temperature fronts in eastern boundary current systems. J. Geophys. Res. Oceans, 120, 23852400, doi:10.1002/2014JC010379.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2008: Improved statistical seasonal forecasts using extended training data. Int. J. Climatol., 28, 15891598, doi:10.1002/joc.1661.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 49 49 12
PDF Downloads 45 45 13

Modified “Rule N” Procedure for Principal Component (EOF) Truncation

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
© Get Permissions
Restricted access

Abstract

Principal component analysis (PCA), also known as empirical orthogonal function (EOF) analysis, is widely used for compression of high-dimensional datasets in such applications as climate diagnostics and seasonal forecasting. A critical question when using this method is the number of modes, representing meaningful signal, to retain. The resampling-based “Rule N” method attempts to address the question of PCA truncation in a statistically principled manner. However, it is only valid for the leading (largest) eigenvalue, because it fails to condition the hypothesis tests for subsequent (smaller) eigenvalues on the results of previous tests. This paper draws on several relatively recent statistical results to construct a hypothesis-test-based truncation rule that accounts at each stage for the magnitudes of the larger eigenvalues. The performance of the method is demonstrated in an artificial data setting and illustrated with a real-data example.

Corresponding author address: Daniel S. Wilks, Department of Earth and Atmospheric Sciences, Cornell University, 1104 Bradfield Hall, Ithaca, NY 14853. E-mail: dsw5@cornell.edu

Abstract

Principal component analysis (PCA), also known as empirical orthogonal function (EOF) analysis, is widely used for compression of high-dimensional datasets in such applications as climate diagnostics and seasonal forecasting. A critical question when using this method is the number of modes, representing meaningful signal, to retain. The resampling-based “Rule N” method attempts to address the question of PCA truncation in a statistically principled manner. However, it is only valid for the leading (largest) eigenvalue, because it fails to condition the hypothesis tests for subsequent (smaller) eigenvalues on the results of previous tests. This paper draws on several relatively recent statistical results to construct a hypothesis-test-based truncation rule that accounts at each stage for the magnitudes of the larger eigenvalues. The performance of the method is demonstrated in an artificial data setting and illustrated with a real-data example.

Corresponding author address: Daniel S. Wilks, Department of Earth and Atmospheric Sciences, Cornell University, 1104 Bradfield Hall, Ithaca, NY 14853. E-mail: dsw5@cornell.edu
Save