Impacts of the Pacific–Japan and Circumglobal Teleconnection Patterns on the Interdecadal Variability of the East Asian Summer Monsoon

Bo Wu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Bo Wu in
Current site
Google Scholar
PubMed
Close
,
Tianjun Zhou State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
, and
Tim Li International Pacific Research Center, and Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on the Twentieth Century Reanalysis (20CR) dataset, the dominant modes of interdecadal variability of the East Asian summer monsoon (EASM) are investigated through a multivariate empirical orthogonal function analysis (MV-EOF). The first mode (EA1) is characterized by an anomalous cyclone centered over Taiwan and an anomalous anticyclone centered over the Bohai Sea. These phenomena are part of the meridional wave–like teleconnection pattern propagating poleward from the southern tropical western North Pacific (WNP), referred to as the interdecadal Pacific–Japan (PJ) pattern. The interdecadal PJ pattern is driven by negative anomalous convective heating over the southern tropical WNP, which is associated with the interdecadal Pacific oscillation (IPO) and the interdecadal Indian Ocean basin mode (IOBM). The amplitude of the EA1 and its contribution to the total variance of the EASM decrease remarkably after the 1960s. The second MV-EOF mode (EA2) is characterized by cyclone anomalies extending from northeastern China to Japan, which are part of a circumglobal wave train. Given the spatial scale of the wave train in the zonal direction (wavenumber 5), as well as the fact that it possesses barotropic structures and propagates along the Northern Hemispheric jet stream, it is referred to herein as the interdecadal circumglobal teleconnection (CGT) pattern. The interdecadal CGT pattern is associated with the forcing from the Atlantic multidecadal oscillation (AMO). Though the interdecadal PJ and CGT patterns are derived from the 20CR dataset, they are carefully verified through comparisons with various observational and reanalysis datasets from different perspectives.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0105.s1.

Corresponding author address: Bo Wu, Institute of Atmospheric Physics, LASG, Mailbox 9804, Beijing 100029, China. E-mail: wubo@mail.iap.ac.cn

Abstract

Based on the Twentieth Century Reanalysis (20CR) dataset, the dominant modes of interdecadal variability of the East Asian summer monsoon (EASM) are investigated through a multivariate empirical orthogonal function analysis (MV-EOF). The first mode (EA1) is characterized by an anomalous cyclone centered over Taiwan and an anomalous anticyclone centered over the Bohai Sea. These phenomena are part of the meridional wave–like teleconnection pattern propagating poleward from the southern tropical western North Pacific (WNP), referred to as the interdecadal Pacific–Japan (PJ) pattern. The interdecadal PJ pattern is driven by negative anomalous convective heating over the southern tropical WNP, which is associated with the interdecadal Pacific oscillation (IPO) and the interdecadal Indian Ocean basin mode (IOBM). The amplitude of the EA1 and its contribution to the total variance of the EASM decrease remarkably after the 1960s. The second MV-EOF mode (EA2) is characterized by cyclone anomalies extending from northeastern China to Japan, which are part of a circumglobal wave train. Given the spatial scale of the wave train in the zonal direction (wavenumber 5), as well as the fact that it possesses barotropic structures and propagates along the Northern Hemispheric jet stream, it is referred to herein as the interdecadal circumglobal teleconnection (CGT) pattern. The interdecadal CGT pattern is associated with the forcing from the Atlantic multidecadal oscillation (AMO). Though the interdecadal PJ and CGT patterns are derived from the 20CR dataset, they are carefully verified through comparisons with various observational and reanalysis datasets from different perspectives.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0105.s1.

Corresponding author address: Bo Wu, Institute of Atmospheric Physics, LASG, Mailbox 9804, Beijing 100029, China. E-mail: wubo@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (DOCX 2.00 MB)
Save
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on U.S. precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Search Google Scholar
    • Export Citation
  • Ding, Q.-H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q.-H., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, doi:10.1175/2011JCLI3621.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., Z. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, doi:10.1002/joc.1615.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., Y. Sun, Z. Wang, Y. Zhu, and Y. Song, 2009: Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part II: Possible causes. Int. J. Climatol., 29, 19261944, doi:10.1002/joc.1759.

    • Search Google Scholar
    • Export Citation
  • Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, doi:10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and C.-H. Ho, 2002: Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys. Res. Lett., 29, 1436, doi:10.1029/2001GL014523.

    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. de Ruijter, 2014: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, doi:10.1175/BAMS-D-13-00028.1.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • He, B., Q. Bao, J. Li, G. Wu, Y. Liu, X. Wang, and Z. Sun, 2013: Influences of external forcing changes on the summer cooling trend over East Asia. Climatic Change, 117, 829841, doi:10.1007/s10584-012-0592-4.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and S.-M. Lin, 2007: Asymmetry of the tripole rainfall pattern during East Asian summer. J. Climate, 20, 44434458, doi:10.1175/JCLI4246.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., T. Zhou, and J. Matsumoto, 2014: East Asian, Indochina and western North Pacific summer monsoon - An update. Asia-Pac. J. Atmos. Sci., 50, 4568.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500hPa height and global sea surface temperature. J. Geophys. Res., 102, 19 40319 412, doi:10.1029/97JD01052.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, doi:10.1256/qj.05.204.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, doi:10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., and H.-H. Hsu, 2013: Identification of the Eurasian–North Pacific multidecadal oscillation and its relationship to the AMO. J. Climate, 26, 81398153, doi:10.1175/JCLI-D-13-00041.1.

    • Search Google Scholar
    • Export Citation
  • Lei, Y., B. Hoskins, and J. Slingo, 2011: Exploring the interplay between natural decadal variability and anthropogenic climate change in summer rainfall over China. Part I: observational evidence. J. Climate, 24, 45844599, doi:10.1175/2010JCLI3794.1.

    • Search Google Scholar
    • Export Citation
  • Lei, Y., B. Hoskins, and J. Slingo, 2014: Natural variability of summer rainfall over China in HadCM3. Climate Dyn., 42, 417432, doi:10.1007/s00382-013-1726-8.

    • Search Google Scholar
    • Export Citation
  • Li, C., T. Li, J. Liang, D. Gu, A. Lin, and B. Zhang, 2010: Interdecadal variations of meridional winds in the South China Sea and their relationship with summer climate in China. J. Climate, 23, 825841, doi:10.1175/2009JCLI2762.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., A. Dai, T. Zhou, and J. Lu, 2010: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Climate Dyn., 34, 501514, doi:10.1007/s00382-008-0482-7.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, J. Hong, B. Dong, A. Duan, Q. Bao, and L. Zhou, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 11831195, doi:10.1007/s00382-012-1335-y.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233244, doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19, 16051623, doi:10.1175/JCLI3675.1.

    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, doi:10.1126/science.1075159.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., and C. Frankignoul, 2009: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Climate Dyn., 33, 4562, doi:10.1007/s00382-008-0452-0.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., C. Frankignoul, and Z. X. Li, 2011: Mechanisms of the atmospheric response to North Atlantic multidecadal variability: A model study. Climate Dyn., 36, 12551276, doi:10.1007/s00382-010-0958-0.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Report Series, No. 14, ECMWF, 59 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2013/11699-data-assimilation-system-and-initial-performance-evaluation-ecmwf-pilot-reanalysis-20th.pdf.]

  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Qian, C., and T. Zhou, 2014: Multidecadal variability of north China aridity and its relationship to PDO during 1900–2010. J. Climate, 27, 12101222, doi:10.1175/JCLI-D-13-00235.1.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., D. Gong, J. Fan, L. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02, doi:10.1029/2008JD011575.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1984: Spatial smoothing on the sphere. Mon. Wea. Rev., 112, 25242529, doi:10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, doi:10.1002/2013GL058705.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, doi:10.1175/2008JCLI2561.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, doi:10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1992: The vertical structure and development of the ENSO anomaly mode during 1979–1989. J. Atmos. Sci., 49, 698712, doi:10.1175/1520-0469(1992)049<0698:TVSADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, D., G. Wu, and J. Xu, 1999: Interdecadal variability in the tropical Indian Ocean and its dynamic explanation. Chin. Sci. Bull., 44, 16201627, doi:10.1007/BF02886106.

    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Gong, J. Ye, and Z. Chen, 2000: Seasonal precipitation series of Eastern China since 1880 and the variability (in Chinese). Acta Geogr. Sin., 55, 281293, doi:10.11821/xb200003004.

    • Search Google Scholar
    • Export Citation
  • Wang, T., H. Wang, H. Ottera, Y. Gao, L. Suo, T. Furevik, and L. Yu, 2013: Anthropogenic forcing of precipitation pattern in eastern China in late 1970s. Atmos. Chem. Phys., 13, 12 43312 450, doi:10.5194/acp-13-12433-2013.

    • Search Google Scholar
    • Export Citation
  • Yang, F., and K. Lau, 2004: Trend and variability of China precipitation in spring and summer: Linkage to sea surface temperatures. Int. J. Climatol., 24, 16251644, doi:10.1002/joc.1094.

    • Search Google Scholar
    • Export Citation
  • Yu, R., and T. Zhou, 2007: Seasonality and three-dimensional structure of the interdecadal change in the East Asian monsoon. J. Climate, 20, 53445355, doi:10.1175/2007JCLI1559.1.

    • Search Google Scholar
    • Export Citation
  • Yu, R., B. Wang, and T. J. Zhou, 2004: Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett., 31, L22212, doi:10.1029/2004GL021270.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2008: The CLIVAR C20C Project: Which components of the Asian–Australian monsoon circulation variations are forced and reproducible? Climate Dyn., 33, 1051, doi:10.1007/s00382-008-0501-8.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009a: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon – Recent progress and state of affairs. Meteor. Z., 18, 455467, doi:10.1127/0941-2948/2009/0396.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009b: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, doi:10.1175/2008JCLI2527.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., F. Song, R. Lin, X. Chen, and X. Chen, 2013: The 2012 north China floods: Explaining an extreme rainfall event in the context of a long-term drying tendency. Bull. Amer. Meteor. Soc., 94, S49S51.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., B. Wang, W. Qian, and B. Zhang, 2012: Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett., 39, L09701, doi:10.1029/2012GL051155.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1773 749 117
PDF Downloads 1384 422 22