Warm Organized Rain Systems over the Tropical Eastern Pacific

Baohua Chen Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Baohua Chen in
Current site
Google Scholar
PubMed
Close
and
Chuntao Liu Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Chuntao Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses 16-yr Tropical Rainfall Measuring Mission (TRMM) radar precipitation feature (RPF) data to characterize warm rain systems in the tropics with large horizontal extensions, referred to as warm organized rain systems. The systems are selected by specifying the RPFs with minimum infrared brightness temperature warmer than 0°C and rain area greater than 500 km2. ERA-Interim atmospheric fields and SST from NOAA are analyzed to highlight the environmental characteristics of warm organized rain systems.

Warm organized systems occur over specific oceanic regions, including the eastern Pacific ITCZ, the eastern part of the SPCZ, and coastal regions. In contrast with ubiquitous warm isolated RPFs, warm organized systems have greater near-surface radar reflectivity. The rainfall amounts generated by warm organized systems are greater in winter than in summer.

Composite analyses indicate that warm organized RPFs prefer to coexist with a dry midtroposphere associated with a strong upper-level descent, an enhanced near-surface moisture convergence, and a strong low-level large-scale ascent. The shallow meridional circulation in the eastern Pacific is significantly stronger for warm organized RPFs compared to the circulation for warm isolated RPFs. Warm organized systems over the tropical eastern Pacific occur at warm SSTs with mean value of about 27°C and a strong SST meridional gradient. The warm organized RPFs in the tropical eastern Pacific are found to be at the southern edge of deep ITCZ cores. This is probably related to the meridional asymmetrical thermodynamic structure over the eastern Pacific ITCZ with a higher low-level humidity to the south. Similar favorable large-scale environments for the warm organized RPFs are also found over the SPCZ and other regions.

Corresponding author address: Dr. Baohua Chen, Department of Physical and Environmental Sciences, Texas A&M University, 6300 Ocean Drive, NRC Room 3508, Corpus Christi, TX 78412. E-mail: baohua.chen@tamucc.edu

Abstract

This study uses 16-yr Tropical Rainfall Measuring Mission (TRMM) radar precipitation feature (RPF) data to characterize warm rain systems in the tropics with large horizontal extensions, referred to as warm organized rain systems. The systems are selected by specifying the RPFs with minimum infrared brightness temperature warmer than 0°C and rain area greater than 500 km2. ERA-Interim atmospheric fields and SST from NOAA are analyzed to highlight the environmental characteristics of warm organized rain systems.

Warm organized systems occur over specific oceanic regions, including the eastern Pacific ITCZ, the eastern part of the SPCZ, and coastal regions. In contrast with ubiquitous warm isolated RPFs, warm organized systems have greater near-surface radar reflectivity. The rainfall amounts generated by warm organized systems are greater in winter than in summer.

Composite analyses indicate that warm organized RPFs prefer to coexist with a dry midtroposphere associated with a strong upper-level descent, an enhanced near-surface moisture convergence, and a strong low-level large-scale ascent. The shallow meridional circulation in the eastern Pacific is significantly stronger for warm organized RPFs compared to the circulation for warm isolated RPFs. Warm organized systems over the tropical eastern Pacific occur at warm SSTs with mean value of about 27°C and a strong SST meridional gradient. The warm organized RPFs in the tropical eastern Pacific are found to be at the southern edge of deep ITCZ cores. This is probably related to the meridional asymmetrical thermodynamic structure over the eastern Pacific ITCZ with a higher low-level humidity to the south. Similar favorable large-scale environments for the warm organized RPFs are also found over the SPCZ and other regions.

Corresponding author address: Dr. Baohua Chen, Department of Physical and Environmental Sciences, Texas A&M University, 6300 Ocean Drive, NRC Room 3508, Corpus Christi, TX 78412. E-mail: baohua.chen@tamucc.edu
Save
  • Austin, G. R., R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1996: Trade-wind clouds and Hawaiian rainbands. Mon. Wea. Rev., 124, 21262151, doi:10.1175/1520-0493(1996)124<2126:TWCAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, doi:10.1175/2009JCLI2392.1.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1993: Variability in concentrations of CCN in the marine cloud-top boundary layer. Tellus, 45B, 458472.

  • Battan, L. J., and R. R. Braham, 1956: A study of convective precipitation based on cloud and radar observations. J. Meteor., 13, 587591, doi:10.1175/1520-0469(1956)013<0587:ASOCPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., C. Kummerow, and C. A. Morales, 2002: Differences between east and west Pacific rainfall systems. J. Climate, 15, 36593672, doi:10.1175/1520-0442(2002)015<3659:DBEAWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434453, doi:10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, doi:10.1175/JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. S. Bretherton, 1995: Tropical wave instabilities: Convective interaction with dynamics using the Emanuel convective parameterization. J. Atmos. Sci., 52, 6782, doi:10.1175/1520-0469(1995)052<0067:TWICIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. K. Hall, 1955: A census of cumulus-cloud height versus precipitation in the vicinity of Puerto Rico during the winter and spring of 1953–1954. J. Meteor., 12, 176178, doi:10.1175/1520-0469(1955)012<0176:ACOCCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, W. A. Cooper, V. Grubišić, and W. C. Lee, 1998: Trade wind rainfall near the windward coast of Hawaii. Mon. Wea. Rev., 126, 28472863, doi:10.1175/1520-0493(1998)126<2847:TWRNTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., and L. Deng, 1996: On the role of wind-induced surface heat exchange in a two-dimensional model of super cloud clusters. J. Geophys. Res., 101, 16 93116 937, doi:10.1029/96JD01224.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and W. Kovan, 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15, 25972615, doi:10.1175/1520-0442(2002)015<2597:CPOTPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, doi:10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, doi:10.1038/312141a0.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, doi:10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2013: Convective self-aggregation, cold pools and domain size. Geophys. Res. Lett., 40, 994998, doi:10.1002/grl.50204.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54, 20202034, doi:10.1175/1520-0469(1997)054<2020:ETWROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. Rickenbach, S. Rutledge, P. Ciesielski, and W. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2002: Similarity of deep cumulus convection as revealed by a three-dimensional cloud-resolving model. J. Atmos. Sci., 59, 25502566, doi:10.1175/1520-0469(2002)059<2550:SODCCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and K. A. Emanuel, 2010: Aggregated convection and the regulation of tropical climate. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., P2.69.

  • Kiladis, G. N., and K. M. Weickmann, 1992: Extratropical forcing of tropical Pacific convection during northern winter. Mon. Wea. Rev., 120, 19241939, doi:10.1175/1520-0493(1992)120<1924:EFOTPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., S. Ringerud, J. Crook, D. Randel, and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H. T. Wu, 2003: Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, 22902295, doi:10.1029/2003GL018567.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. Zipser, 2009: “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767779, doi:10.1175/2008JCLI2641.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. Zipser, 2013: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453466, doi:10.1029/2012JD018409.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. Zipser, 2014: Differences between the surface precipitation estimates from the TRMM Precipitation Radar and passive microwave radiometer version 7 products. J. Hydrometeor., 15, 21572175, doi:10.1175/JHM-D-14-0051.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. Zipser, D. Cesil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., W. Tang, and P. P. Niiler, 1991: Humidity profiles over the ocean. J. Climate, 4, 10231034, doi:10.1175/1520-0442(1991)004<1023:HPOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., 1957: Trade cumulus cloud groups: Some observations suggesting a mechanism of their origin. Tellus, 9A, 3344, doi:10.1111/j.2153-3490.1957.tb01851.x.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., and H. Riehl, 1964: Cloud structure and distributions over the tropical Pacific Ocean. Tellus, 16A, 275287, doi:10.1111/j.2153-3490.1964.tb00167.x.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 31, 156179, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • Mapes, B. E., and P. Zuidema, 1996: Radiative–dynamical consequence of dry tongues in the tropical troposphere. J. Atmos. Sci., 53, 620638, doi:10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, I. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991, doi:10.1175/2008JCLI1995.1.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., and Coauthors, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

  • Minor, H. A., R. M. Rauber, S. Göke, and L. Di Girolamo, 2011: Trade wind cloud evolution observed by polarization radar: Relationship to giant condensation nuclei concentrations and cloud organization. J. Atmos. Sci., 68, 10751096, doi:10.1175/2010JAS3675.1.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, doi:10.1175/JAS-D-11-0257.1.

    • Search Google Scholar
    • Export Citation
  • Nair, U., R. Weger, K. Kou, and R. Welch, 1998: Clustering, randomness, and regularity in cloud fields: 5. The nature of regular cumulus cloud fields. J. Geophys. Res., 103, 11 36311 380, doi:10.1029/98JD00088.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, doi:10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., and K. A. Emanuel, 1999: Equilibrium atmospheres of a two-column radiative-convective model. Quart. J. Roy. Meteor. Soc., 125, 22392264, doi:10.1002/qj.49712555814.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Stevens, and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979, doi:10.1175/2008JAS2841.1.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., 1999: Hierarchical organization of super cloud cluster caused by WISHE, convectively induced gravity waves and cold pool. J. Meteor. Soc. Japan, 77, 907927.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1999: Prevalence of precipitation from warm-topped clouds over eastern Asia and the western Pacific. J. Climate, 12, 220229, doi:10.1175/1520-0442-12.1.220.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 2732, doi:10.1038/351027a0.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and G. Huffman, 1980: A stochastic model of cumulus clumping. J. Atmos. Sci., 37, 20682078, doi:10.1175/1520-0469(1980)037<2068:ASMOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007a: A supplement to rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88 (12), S12S18, doi:10.1175/BAMS-88-12-Rauber.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007b: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Raymond, D., 2000: The Hadley circulation as a radiative–convective instability. J. Atmos. Sci., 57, 12861297, doi:10.1175/1520-0469(2000)057<1286:THCAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Roca, R., J. P. Lafore, C. Piriou, and J.-L. Redelsperger, 2005: Extratropical dry-air intrusion into the West African monsoon midtroposphere: An important factor for the convective activity over the Sahel. J. Atmos. Sci., 62, 390407, doi:10.1175/JAS-3366.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., P. E. Ciesielski, C. Lu, and R. H. Johnson, 1995: Dynamical adjustment of the trade wind inversion layer. J. Atmos. Sci., 52, 29412952, doi:10.1175/1520-0469(1995)052<2941:DAOTTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003: The TRMM Precipitation Radar’s view of shallow isolated rain. J. Appl. Meteor., 42, 15191524, doi:10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and T. Heus, 2013: Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys., 13, 56315645, doi:10.5194/acp-13-5631-2013.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124, doi:10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large-eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snodgrass, E. R., L. Di Girolamo, and R. M. Rauber, 2009: Precipitation characteristics of trade wind clouds during RICO derived from radar, satellite, and aircraft measurements. J. Appl. Meteor. Climatol, 48, 464483, doi:10.1175/2008JAMC1946.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. V. D. Heever, and L. Pakula, 2008: Radiative–convective feedbacks in idealized states of radiative–convective equilibrium. J. Atmos. Sci., 65, 38993916, doi:10.1175/2008JAS2524.1.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2006: Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions. Atmos. Res., 82, 3754, doi:10.1016/j.atmosres.2005.01.007.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Y.-L. Chen, 1998: A case study of trade-wind rain bands and their interaction with the island-induced airflow. Mon. Wea. Rev., 126, 409423, doi:10.1175/1520-0493(1998)126<0409:ACSOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warner, C., J. Simpson, D. W. Martin, D. Suchman, F. R. Mosher, and R. F. Reinking, 1979: Shallow convection on day 261 of GATE: Mesoscale arcs. Mon. Wea. Rev., 107, 16171635, doi:10.1175/1520-0493(1979)107<1617:SCODOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2012: Organization of tropical convection: Dependence of self-aggregation on SST in an idealized modeling study. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 12C.4.

  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms of controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst, 6, 5974, doi:10.1002/2013MS000269.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, doi:10.1175/BAMS-85-2-195.

    • Search Google Scholar
    • Export Citation
  • Yin, B., and B. A. Albrecht, 2000: Spatial variability of atmospheric boundary layer structure over the eastern equatorial Pacific. J. Climate, 13, 15741592, doi:10.1175/1520-0442(2000)013<1574:SVOABL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., E. J. Zipser, and C. Liu, 2014: TRMM-observed shallow versus deep convection in the eastern Pacific related to large-scale circulations in reanalysis datasets. J. Climate, 27, 55755592, doi:10.1175/JCLI-D-13-00315.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913, doi:10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. McGauley, and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17, 133139, doi:10.1175/1520-0442(2004)017<0133:SMCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., B. Mapes, J. Lin, C. Fairall, and G. Wick, 2006: The interaction of clouds and dry air in the eastern tropical Pacific. J. Climate, 19, 45314544, doi:10.1175/JCLI3836.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2012: On the trade wind cumulus cold pools. J. Atmos. Sci., 69, 258280, doi:10.1175/JAS-D-11-0143.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 202 58 5
PDF Downloads 108 21 1