On the Zonal Near-Constancy of Fractional Solar Absorption in the Atmosphere

Maria Z. Hakuba Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland

Search for other papers by Maria Z. Hakuba in
Current site
Google Scholar
PubMed
Close
,
Doris Folini Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland

Search for other papers by Doris Folini in
Current site
Google Scholar
PubMed
Close
, and
Martin Wild Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland

Search for other papers by Martin Wild in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Over Europe, a recent study found the fractional all-sky atmospheric solar absorption to be largely unaffected by variations in latitude, remaining nearly constant at its regional mean of 23% ± 1%, relative to the respective top-of-atmosphere insolation. The satellite-based CERES EBAF dataset (2000–10) confirms the weak latitude dependence within 23% ± 2%, representative of the near-global scale between 60°S and 60°N. Under clear-sky conditions, the fractional absorption follows the spatial imprint of the water vapor path, peaking in the tropics and decreasing toward the poles, accompanied by a slight hemispheric asymmetry. In the northern extratropics, the clear-sky absorption attains zonal near-constancy due to combined water vapor, surface albedo, and aerosol effects that are largely amiss in the Southern Hemisphere. In line with earlier studies, the CERES EBAF suggests an increase in atmospheric solar absorption due to clouds by on average 1.5% (5 W m−2) from 21.5% (78 W m−2) under clear-sky conditions to 23% (83 W m−2) under all-sky conditions (60°S–60°N). The low-level clouds in the extratropics act to enhance the absorption, whereas the high clouds in the tropics exhibit a near-zero effect. Consequently, clouds reduce the latitude dependence of fractional atmospheric solar absorption and yield a near-constant zonal mean pattern under all-sky conditions. In the GEWEX-SRB satellite product and the historical simulations from phase 5 of CMIP (CMIP5; 1996–2005, multimodel mean) the amount of insolation absorbed by the atmosphere is reduced by around −1.3% (5 W m−2) with respect to the CERES EBAF mean. The zonal variability and magnitude of the atmospheric cloud effect are, however, largely in line.

Corresponding author address: Maria Z. Hakuba, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland. E-mail: maria.hakuba@gmail.com

Abstract

Over Europe, a recent study found the fractional all-sky atmospheric solar absorption to be largely unaffected by variations in latitude, remaining nearly constant at its regional mean of 23% ± 1%, relative to the respective top-of-atmosphere insolation. The satellite-based CERES EBAF dataset (2000–10) confirms the weak latitude dependence within 23% ± 2%, representative of the near-global scale between 60°S and 60°N. Under clear-sky conditions, the fractional absorption follows the spatial imprint of the water vapor path, peaking in the tropics and decreasing toward the poles, accompanied by a slight hemispheric asymmetry. In the northern extratropics, the clear-sky absorption attains zonal near-constancy due to combined water vapor, surface albedo, and aerosol effects that are largely amiss in the Southern Hemisphere. In line with earlier studies, the CERES EBAF suggests an increase in atmospheric solar absorption due to clouds by on average 1.5% (5 W m−2) from 21.5% (78 W m−2) under clear-sky conditions to 23% (83 W m−2) under all-sky conditions (60°S–60°N). The low-level clouds in the extratropics act to enhance the absorption, whereas the high clouds in the tropics exhibit a near-zero effect. Consequently, clouds reduce the latitude dependence of fractional atmospheric solar absorption and yield a near-constant zonal mean pattern under all-sky conditions. In the GEWEX-SRB satellite product and the historical simulations from phase 5 of CMIP (CMIP5; 1996–2005, multimodel mean) the amount of insolation absorbed by the atmosphere is reduced by around −1.3% (5 W m−2) with respect to the CERES EBAF mean. The zonal variability and magnitude of the atmospheric cloud effect are, however, largely in line.

Corresponding author address: Maria Z. Hakuba, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland. E-mail: maria.hakuba@gmail.com
Save
  • Abbot, C. G., and F. E. Fowle, 1908: Annals of the Astrophysical Observatory of the Smithsonian Institution. Vol. II. Smithsonian Institution, 245 pp.

  • Arking, A., 1996: Absorption of solar energy in the atmosphere: Discrepancy between model and observations. Science, 273, 779782, doi:10.1126/science.273.5276.779.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Budyko, M. I., 1982: Heat balance of the Earth’s surface. U.S. Weather Bureau Memo. 131692, 259 pp.

  • Cess, R. D., and Coauthors, 1995: Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496499, doi:10.1126/science.267.5197.496.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., M. H. Zhang, Y. Zhou, X. Jing, and V. Dvortsov, 1996: Absorption of solar radiation by clouds: Interpretations of satellite, surface, and aircraft measurements. J. Geophys. Res., 101 (D18), 23 29923 309, doi:10.1029/96JD02156.

    • Search Google Scholar
    • Export Citation
  • Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105 (D20), 24 67124 687, doi:10.1029/2000JD900384.

    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., V. Ramanathan, D. Kim, and I. A. Podgorny, 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res., 110, D24207, doi:10.1029/2005JD006356.

    • Search Google Scholar
    • Export Citation
  • Colbo, K., and R. A. Weller, 2009: Accuracy of the IMET sensor package in the subtropics. J. Atmos. Oceanic Technol., 26, 18671890, doi:10.1175/2009JTECHO667.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 1998: A global signature of enhanced shortwave absorption by clouds. J. Geophys. Res., 103 (D24), 31 66931 679, doi:10.1029/1998JD200022.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 2001: Effects of enhanced shortwave absorption on coupled simulations of the tropical climate system. J. Climate, 14, 11471165, doi:10.1175/1520-0442(2001)014<1147:EOESAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 2006: Unresolved issues in atmospheric solar absorption. Frontiers of Climate Modeling, J. T. Kiehl and V. Ramanathan, Eds., Cambridge University Press, 179–216.

  • Crisp, D., 1997: Absorption of sunlight by water vapor in cloudy conditions: A partial explanation for the cloud absorption anomaly. Geophys. Res. Lett., 24, 571574, doi:10.1029/97GL50245.

    • Search Google Scholar
    • Export Citation
  • Dines, W. H., 1917: The heat balance of the atmosphere. Quart. J. Meteor. Soc., 43, 151158, doi:10.1002/qj.49704318203.

  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, doi:10.1175/JTECH-D-12-00136.1.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, doi:10.1175/JCLI-D-12-00467.1.

    • Search Google Scholar
    • Export Citation
  • Dutton, E. G., C. Long, M. Wild, A. Ohmura, J. Groebner, and A. Roesch, 2012: Long-term in-situ surface flux data products. GEWEX Radiation Flux Assessment (RFA) volume 1: Assessment, WCRP Rep. 19/2012, 135–158. [Available online at http://www.wcrp-climate.org/documents/GEWEX%20RFA-Volume%201-report.pdf.]

  • Foltz, G. R., A. T. Evan, H. P. Freitag, S. Brown, and M. J. McPhaden, 2013: Dust accumulation biases in PIRATA shortwave radiation records. J. Atmos. Oceanic Technol., 30, 14141432, doi:10.1175/JTECH-D-12-00169.1.

    • Search Google Scholar
    • Export Citation
  • Grassl, H., 1975: Albedo reduction and radiative heating of clouds by absorbing aerosol particles. Beitr. Phys. Atmos., 48, 199210.

  • Hakuba, M. Z., D. Folini, G. Schaepman-Strup, and M. Wild, 2014: Solar absorption over Europe from collocated surface and satellite observations. J. Geophys. Res. Atmos., 119, 34203437, doi:10.1002/2013JD021421.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 (D6), 68316864, doi:10.1029/96JD03436.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95 (D11), 18 68718 703, doi:10.1029/JD095iD11p18687.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 405 pp.

  • Houghton, H. G., 1954: On the annual heat balance of the Northern Hemisphere. J. Meteor., 11, 19, doi:10.1175/1520-0469(1954)011<0001:OTAHBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howard, J. N., D. E. Burch, and D. Williams, 1956: Infrared transmission of synthetic atmospheres. III. Absorption by water vapor. J. Opt. Soc. Amer., 46, 242245, doi:10.1364/JOSA.46.000242.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., T. P. Charlock, W. L. Smith, and K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophys. Res. Lett., 31, L22301, doi:10.1029/2004GL021180.

    • Search Google Scholar
    • Export Citation
  • Kato, S., T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, and J. Michalsky, 1997: Uncertainties in modeled and measured clear-sky surface shortwave irradiances. J. Geophys. Res., 102 (D22), 25 88125 898, doi:10.1029/97JD01841.

    • Search Google Scholar
    • Export Citation
  • Kato, S., F. Rose, D. A. Rutan, and T. P. Charlock, 2008: Cloud effects on the meridional atmospheric energy budget estimated from Clouds and the Earth’s Radiant Energy System (CERES) data. J. Climate, 21, 42234241, doi:10.1175/2008JCLI1982.1.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, D. A. Rutan, F. G. Rose, S. Sun-Mack, W. F. Miller, and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395412, doi:10.1007/s10712-012-9179-x.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Search Google Scholar
    • Export Citation
  • Keevallik, S., R. Hindov, and U. Rannik, 1994: Solar absorption at the surface and in the atmosphere as determined by different observational methods. Theor. Appl. Climatol., 49, 249261, doi:10.1007/BF00867464.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208, doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, M. H. Zhang, and R. D. Cess, 1995: Sensitivity of a GCM climate to enhanced shortwave cloud absorption. J. Climate, 8, 22002212, doi:10.1175/1520-0442(1995)008<2200:SOAGCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and V. Ramanathan, 2008: Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res., 113, D02203, doi:10.1029/2007JD008434.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and V. Ramanathan, 2012: Improved estimates and understanding of global albedo and atmospheric solar absorption. Geophys. Res. Lett., 39, L24704, doi:10.1029/2012GL053757.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., R. Bergstrom, O. B. Toon, E. Dutton, and M. Shiobara, 1998: Clear-sky atmospheric solar transmission: An analysis based on FIRE 1991 field experiment data. J. Geophys. Res., 103 (D16), 19 70919 720, doi:10.1029/98JD01540.

    • Search Google Scholar
    • Export Citation
  • König-Langlo, G., R. Sieger, H. Schmithüsen, A. Bücker, F. Richter, and E. Dutton, 2013: Baseline Surface Radiation Network (BSRN)—Update of the technical plan for BSRN data management. WCRP Rep. 24/2013, 25 pp. [Available online http://www.wmo.int/pages/prog/gcos/Publications/gcos-174.pdf.]

  • Lacis, A. A., and J. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118133, doi:10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laszlo, I., and R. T. Pinker, 1993: Shortwave cloud-radiative forcing at the top of the atmosphere at the surface and of the atmospheric column as determined from ISCCP C1 data. J. Geophys. Res., 98 (D2), 27032713, doi:10.1029/92JD02667.

    • Search Google Scholar
    • Export Citation
  • Li, Z., 2004: On the solar radiation budget and cloud absorption anomaly debate. Observation, Theory, and Modeling of the Atmospheric Variability, X. Zhu, Ed., World Scientific, 437–456.

  • Li, Z., and H. G. Leighton, 1993: Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J. Geophys. Res., 98 (D3), 49194930, doi:10.1029/93JD00003.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and L. Moreau, 1996: Alteration of atmospheric solar absorption by clouds: Simulation and observation. J. Appl. Meteor., 35, 653670, doi:10.1175/1520-0450(1996)035<0653:AOASAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Z., C. Whitlock, and T. Charlock, 1995: Assessment of the global monthly mean surface insolation estimated from satellite measurements using Global Energy Balance Archive data. J. Climate, 8, 315328, doi:10.1175/1520-0442(1995)008<0315:AOTGMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Z., L. Moreau, and A. Arking, 1997: On solar energy disposition: A perspective from observation and modeling. Bull. Amer. Meteor. Soc., 78, 5370, doi:10.1175/1520-0477(1997)078<0053:OSEDAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Z., T. P. Ackerman, W. Wiscombe, and G. L. Stephens, 2003: Have clouds darkened since 1995? Science, 302, 11511152, doi:10.1126/science.302.5648.1151.

    • Search Google Scholar
    • Export Citation
  • Liu, F., 2003: A sensitivity study of a general circulation model with enhanced shortwave atmospheric absorption. Ph.D. dissertation, The Johns Hopkins University, 174 pp.

  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, doi:10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., H. Wang, A. Cheng, S. Kato, J. T. Fasullo, K.-M. Xu, and R. P. Allan, 2016: Observational constraints on atmospheric and oceanic cross-equatorial heat transports: Revisiting the precipitation asymmetry problem in climate models. Climate Dyn., doi:10.1007/s00382-015-2766-z, in press.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and T. P. Ackermann, 2000: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res., 105 (D12), 15 60915 626, doi:10.1029/2000JD900077.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1960: Direct absorption of solar radiation by atmospheric water vapor. J. Meteor., 17, 319328, doi:10.1175/1520-0469(1960)017<0319:DAOSRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mirinova, Z., 1973: Albedo of the Earth’s surface and clouds. Radiation Characteristics of the Atmosphere and the Earth’s Surface, K. Ya. Kondrat’Ev, Ed., NASA/Amerind, 192–247.

  • NASA LARC, 2014: CERES_EBAF_Ed2.8—Data quality summary (March 19, 2014). NASA Langley Research Center, 52 pp.

  • O’Hirok, W., C. Gautier, and P. Ricchiazzi, 2000: Spectral signature of column solar radiation absorption during the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE). J. Geophys. Res., 105 (D13), 17 47117 480, doi:10.1029/2000JD900190.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WRCP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paynter, D. J., and V. Ramaswamy, 2011: An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer. J. Geophys. Res., 116, D20302, doi:10.1029/2010JD01550.

    • Search Google Scholar
    • Export Citation
  • Paynter, D. J., and V. Ramaswamy, 2012: Variations in water vapor continuum radiative transfer with atmospheric conditions. J. Geophys. Res., 117, D16310, doi:10.1029/2012JD017504.

    • Search Google Scholar
    • Export Citation
  • Paynter, D. J., and V. Ramaswamy, 2014: Investigating the impact of the shortwave water vapor continuum upon climate simulations using GFDL global models. J. Geophys. Res. Atmos., 119, 10 72010 737, doi:10.1002/2014JD021881.

    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., and F. P. J. Valero, 1995: Direct observations of excess solar absorption by clouds. Science, 267, 16261629, doi:10.1126/science.267.5204.1626.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227, doi:10.1038/ngeo156.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. Cess, E. Harrison, P. Minnis, B. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., B. Subasilar, G. J. Zhang, W. Conant, R. D. Cess, J. T. Kiehi, H. Grassi, and L. Shi, 1995: Warm pool heat budget and shortwave cloud forcing: A missing physics? Science, 267, 499503, doi:10.1126/science.267.5197.499.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 21192124, doi:10.1126/science.1064034.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and S. Freidenreich, 1998: A high-spectral resolution study of the near-infrared solar flux disposition in clear and overcast atmospheres. J. Geophys. Res., 103 (D18), 23 25523 273, doi:10.1029/98JD02379.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., A. Ohmura, W. B. Rossow, B. E. Carlson, Y.-C. Zhang, C. Stubenrauch, M. Kottek, and M. Wild, 2005: Cloud effects on the radiation budget based on ISCCP data (1991 to 1995). Int. J. Climatol., 25, 11031125, doi:10.1002/joc.1157.

    • Search Google Scholar
    • Export Citation
  • Reda, I., and A. Andreas, 2008: Solar position algorithm for solar radiation applications. NREL Rep. TP-560–34302, National Renewable Energy Laboratory, 39 pp.

  • Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner, 2014: Climate effects of aerosol–cloud interactions. Science, 343, 379380, doi:10.1126/science.1247490.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutan, D., F. Rose, M. Roman, N. Manalo-Smith, C. Schaaf, and T. Charlock, 2009: Development and Assessment of broadband surface albedo from Clouds and Earth’s Radiant Energy System Clouds and Radiation Swath data product. J. Geophys. Res., 114, D08125, doi:10.1029/2008JD010669.

    • Search Google Scholar
    • Export Citation
  • Rutan, D., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, doi:10.1175/JTECH-D-14-00165.1.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S., and V. Ramanathan, 2000: Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature, 405, 6063, doi:10.1038/35011039.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., 1993: Relationship between solar net radiative fluxes at the top of the atmosphere and at the surface. J. Atmos. Sci., 50, 11221132, doi:10.1175/1520-0469(1993)050<1122:RBSNRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., and E. A. Smith, 1992: The significance of cloud-radiative forcing to the general circulation on climate time scales—A satellite interpretation. J. Atmos. Sci., 49, 845860, doi:10.1175/1520-0469(1992)049<0845:TSOCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. W. Portmann, R. W. Sanders, and J. S. Daniel, 1998: Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere. J. Geophys. Res., 103 (D4), 38473858, doi:10.1029/97JD03285.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., S. J. Cox, S. K. Gupta, M. Chiacchio, and J. C. Mikovitz, 2001: The WCRP/GEWEX surface radiation budget project release 2: An assessment of surface fluxes at 1 degree resolution. Proc. Int. Radiation Symp., St. Petersburg, Russia, IRS2000, 147–150. [Available online at http://www.cs.odu.edu/~mln/ltrs-pdfs/NASA-2000-irs-pws.pdf.]

  • Stephens, G. L., and S.-C. Tsay, 1990: On the cloud absorption anomaly. Quart. J. Roy. Meteor. Soc., 116, 671704, doi:10.1002/qj.49711649308.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. L’Ecuyer, 2015: The earth’s energy balance. Atmos. Res., 166, 195203, doi:10.1016/j.atmosres.2015.06.024.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., R. D. Cess, M. H. Zhang, P. Pilewskie, and F. P. J. Valero, 1996: How much solar radiation do clouds absorb? Science, 271, 1131, doi:10.1126/science.271.5252.1131.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J.-l. Li, 2015: The albedo of earth. Rev. Geophys., 53, 141163, doi:10.1002/2014RG000449.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system, version 4. NASA/TM-2005-104606, Vol. 26, 187 pp.

  • Tarasova, T. A., and B. A. Fomin, 2000: Solar radiation absorption due to water vapor: Advanced broadband parameterizations. J. Appl. Meteor., 39, 19471951, doi:10.1175/1520-0450(2000)039<1947:SRADTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323, doi:10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and W. Su, 2013: Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project phase 5 (CMIP5) models using satellite observations. J. Geophys. Res. Atmos., 118, 683699, doi:10.1029/2012JD018619.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, S. G. Louis, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2000: Absorption of solar energy in cloudless and cloudy atmospheres over Germany and in GCMs. Geophys. Res. Lett., 27, 959962, doi:10.1029/1999GL011144.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2008: Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC-AR4/CMIP3 models. Tellus, 60A, 932945, doi:10.1111/j.1600-0870.2008.00342.x.

    • Search Google Scholar
    • Export Citation
  • Wild, M., and A. Ohmura, 1999: The role of clouds and the cloud-free atmosphere in the problem of underestimated absorption of solar radiation in GCM atmospheres. Phys. Chem. Earth, 24B, 261268, doi:10.1016/S1464-1909(98)00048-3.

    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, and E. Roeckner, 1995: Validation of general circulation model radiative fluxes using surface observations. J. Climate, 8, 13091324, doi:10.1175/1520-0442(1995)008<1309:VOGCMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, E. Roeckner, M. Giorgetta, and J.-J. Morcrette, 1998: The disposition of radiative energy in the global climate system: GCM-calculated versus observational estimates. Climate Dyn., 14, 853869, doi:10.1007/s003820050260.

    • Search Google Scholar
    • Export Citation
  • Wild, M., J. Grieser, and C. Schär, 2008: Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett., 35, L17706, doi:10.1029/2008GL034842.

    • Search Google Scholar
    • Export Citation
  • Wild, M., D. Folini, C. Schär, N. Loeb, E. G. Dutton, and G. König-Langlo, 2013: The global energy balance from a surface perspective. Climate Dyn., 40, 31073134, doi:10.1007/s00382-012-1569-8.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, G., and G. Onishi, 1952: Absorption of solar radiation by water vapor in the atmosphere. J. Meteor., 9, 415421, doi:10.1175/1520-0469(1952)009<0415:AOSRBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, doi:10.1002/jgrc.20390.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., 1996: Impact of the convection–wind–evaporation feedback on surface climate simulation in general circulation models. Climate Dyn., 12, 299312, doi:10.1007/BF00231104.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., W. Y. Lin, and J. T. Kiehl, 1998: Bias of atmospheric shortwave absorption in the NCAR Community Climate Models 2 and 3: Comparison with monthly ERBE/GEBA measurements. J. Geophys. Res., 103 (D8), 89198925, doi:10.1029/98JD00343.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 294 136 65
PDF Downloads 133 45 9