Relationships between Hourly Rainfall Intensity and Atmospheric Variables over the Contiguous United States

Chiara Lepore Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Chiara Lepore in
Current site
Google Scholar
PubMed
Close
,
John T. Allen International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by John T. Allen in
Current site
Google Scholar
PubMed
Close
, and
Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rainfall intensity displays relationships with atmospheric conditions such as surface temperature, and these relationships have implications for how the intensity of rainfall varies with climate. Here, hourly gauge measurements of rainfall over the contiguous United States (CONUS) are related to atmospheric variables taken from the North American Regional Reanalysis for the period 1979–2012. This analysis extends previous work relating the rainfall process to the environment by including a wider range of variables in univariate and bivariate quantile regressions. Known covariate relationships are used to quantify the regional contributions of different weather regimes to rainfall occurrence and to identify preferential atmospheric states for rainfall occurrence. The efficiency of different sets of regressors is evaluated, and the results show that both moisture availability and vertical instability should be taken into account, with CAPE in combination with specific humidity or dewpoint temperature being the most powerful regressors. Different regions and seasons behave differently, pointing to the challenges of constructing global or CONUS-wide models for representing the rainfall process. In particular, the relationships between environment and rainfall in the west of the United States are different from other regions, reflecting nonlocal rainfall processes. Most of the coastal and eastern United States display relatively low regional variability in the relationships between rainfall and environment.

Corresponding author address: Chiara Lepore, 207 Monell, 61 Rte. 9W, P.O. Box 1000, Palisades, NY 10964-8000. E-mail: clepore@ldeo.columbia.edu

Abstract

Rainfall intensity displays relationships with atmospheric conditions such as surface temperature, and these relationships have implications for how the intensity of rainfall varies with climate. Here, hourly gauge measurements of rainfall over the contiguous United States (CONUS) are related to atmospheric variables taken from the North American Regional Reanalysis for the period 1979–2012. This analysis extends previous work relating the rainfall process to the environment by including a wider range of variables in univariate and bivariate quantile regressions. Known covariate relationships are used to quantify the regional contributions of different weather regimes to rainfall occurrence and to identify preferential atmospheric states for rainfall occurrence. The efficiency of different sets of regressors is evaluated, and the results show that both moisture availability and vertical instability should be taken into account, with CAPE in combination with specific humidity or dewpoint temperature being the most powerful regressors. Different regions and seasons behave differently, pointing to the challenges of constructing global or CONUS-wide models for representing the rainfall process. In particular, the relationships between environment and rainfall in the west of the United States are different from other regions, reflecting nonlocal rainfall processes. Most of the coastal and eastern United States display relatively low regional variability in the relationships between rainfall and environment.

Corresponding author address: Chiara Lepore, 207 Monell, 61 Rte. 9W, P.O. Box 1000, Palisades, NY 10964-8000. E-mail: clepore@ldeo.columbia.edu
Save
  • Allen, J. T., and D. J. Karoly, 2014: A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. Int. J. Climatol., 34, 8197, doi:10.1002/joc.3667.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., D. J. Karoly, and G. A. Mills, 2011: A severe thunderstorm climatology for Australia and associated thunderstorm environments. Aust. Meteor. Oceanogr. J., 61, 143158.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015a: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, doi:10.1002/2014MS000397.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015b: Influence of the El Nino/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, doi:10.1038/ngeo2385.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., J. S. Kain, and M. P. Kay, 2002: Properties of the convection scheme in NCEP’s Eta Model that affect forecast sounding interpretation. Wea. Forecasting, 17, 10631079, doi:10.1175/1520-0434(2002)017<1063:POTCSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, P., J. Haerter, P. Thejll, C. Piani, S. Hagemann, and J. Christensen, 2009: Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res., 114, D18102, doi:10.1029/2009JD012008.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and D. J. Karoly, 2007: A brief evaluation of precipitation from the North American Regional Reanalysis. J. Hydrometeor., 8, 837846, doi:10.1175/JHM595.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., M. Tippett, A. Sobel, G. Vecchi, and M. Zhao, 2014: Testing the performance of tropical cyclone genesis indices in future climates using the HIRAM model. J. Climate, 27, 91719196, doi:10.1175/JCLI-D-13-00505.1.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2009: Time-dependent changes in extreme-precipitation return-period amounts in the continental United States. J. Appl. Meteor. Climatol., 48, 20862099, doi:10.1175/2009JAMC2179.1.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, doi:10.1073/pnas.1307758110.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014: Severe-thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteor. Climatol., 53, 742751, doi:10.1175/JAMC-D-13-0263.1.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, doi:10.1175/JCLI3339.1.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, and T. R. Karl, 2012: Changes in intense precipitation over the central United States. J. Hydrometeor., 13, 4766, doi:10.1175/JHM-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., and P. Berg, 2009: Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci., 2, 372373, doi:10.1038/ngeo523.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., and J. Jacobeit, 2013: A novel approach to statistical downscaling considering nonstationarities: Application to daily precipitation in the Mediterranean area. J. Geophys. Res. Atmos., 118, 520533, doi:10.1002/jgrd.50112.

    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., H. E. Brooks, and R. S. Schumacher, 2013: Spatial and temporal characteristics of heavy hourly rainfall in the United States. Mon. Wea. Rev., 141, 45644575, doi:10.1175/MWR-D-12-00297.1.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. Van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, doi:10.1038/ngeo262.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. Van Meijgaard, 2009: Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci., 2, 373373, doi:10.1038/ngeo524.

    • Search Google Scholar
    • Export Citation
  • Lepore, C., D. Veneziano, and A. Molini, 2015: Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett., 42, 7483, doi:10.1002/2014GL062247.

    • Search Google Scholar
    • Export Citation
  • Li, H., and B. A. Colle, 2014: Multidecadal changes in the frequency and ambient conditions of warm season convective storms over the northeastern United States. J. Climate, 27, 72857300, doi:10.1175/JCLI-D-13-00785.1.

    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly, 2007: Assessment of the severe weather environment in North America simulated by a global climate model. Atmos. Sci. Lett., 8, 100106, doi:10.1002/asl.159.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Molini, L., A. Parodi, N. Rebora, and G. C. Craig, 2011: Classifying severe rainfall events over Italy by hydrometeorological and dynamical criteria. Quart. J. Roy. Meteor. Soc., 137, 148154, doi:10.1002/qj.741.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010: Sensitivity of monthly convective precipitation to environmental conditions. J. Climate, 23, 166188, doi:10.1175/2009JCLI2792.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632, doi:10.1175/BAMS-86-11-1619.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Rudolph, J. V., and K. Friedrich, 2014: Dynamic and thermodynamic predictors of vertical structure in radar-observed regional precipitation. J. Climate, 27, 21432158, doi:10.1175/JCLI-D-13-00239.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, S. B., A. A. Royem, and S. J. Riha, 2011: The relationship between extreme hourly precipitation and surface temperature in different hydroclimatic regions of the United States. J. Hydrometeor., 12, 319325, doi:10.1175/2011JHM1364.1.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2014: Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett., 41, 60376044, doi:10.1002/2014GL061222.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, doi:10.1175/2009MWR2939.1.

    • Search Google Scholar
    • Export Citation
  • Steinschneider, S., and U. Lall, 2015: A hierarchical Bayesian regional model for nonstationary precipitation extremes in northern California conditioned on tropical moisture exports. Water Resour. Res., 51, 14721492, doi:10.1002/2014WR016664.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett., 39, L02801, doi:10.1029/2011GL050368.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, S. J. Camargo, and J. T. Allen, 2014: An empirical relation between U.S. tornado activity and monthly environmental parameters. J. Climate, 27, 29832999, doi:10.1175/JCLI-D-13-00345.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, doi:10.1073/pnas.0705494104.

    • Search Google Scholar
    • Export Citation
  • Utsumi, N., S. Seto, S. Kanae, E. E. Maeda, and T. Oki, 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, doi:10.1029/2011GL048426.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, doi:10.1175/2010MWR3499.1.

    • Search Google Scholar
    • Export Citation
  • West, G. L., W. J. Steenburgh, and W. Y. Cheng, 2007: Spurious grid-scale precipitation in the North American Regional Reanalysis. Mon. Wea. Rev., 135, 21682184, doi:10.1175/MWR3375.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1112 255 20
PDF Downloads 817 179 22