Has Arctic Sea Ice Loss Contributed to Increased Surface Melting of the Greenland Ice Sheet?

Jiping Liu * Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Jiping Liu in
Current site
Google Scholar
PubMed
Close
,
Zhiqiang Chen State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, and Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhiqiang Chen in
Current site
Google Scholar
PubMed
Close
,
Jennifer Francis Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Jennifer Francis in
Current site
Google Scholar
PubMed
Close
,
Mirong Song State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, and Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Mirong Song in
Current site
Google Scholar
PubMed
Close
,
Thomas Mote Department of Geography, University of Georgia, Athens, Georgia

Search for other papers by Thomas Mote in
Current site
Google Scholar
PubMed
Close
, and
Yongyun Hu Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yongyun Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In recent decades, the Greenland ice sheet has experienced increased surface melt. However, the underlying cause of this increased surface melting and how it relates to cryospheric changes across the Arctic remain unclear. Here it is shown that an important contributing factor is the decreasing Arctic sea ice. Reduced summer sea ice favors stronger and more frequent occurrences of blocking-high pressure events over Greenland. Blocking highs enhance the transport of warm, moist air over Greenland, which increases downwelling infrared radiation, contributes to increased extreme heat events, and accounts for the majority of the observed warming trends. These findings are supported by analyses of observations and reanalysis data, as well as by independent atmospheric model simulations using a state-of-the-art atmospheric model that is forced by varying only the sea ice conditions. Reduced sea ice conditions in the model favor more extensive Greenland surface melting. The authors find a positive feedback between the variability in the extent of summer Arctic sea ice and melt area of the summer Greenland ice sheet, which affects the Greenland ice sheet mass balance. This linkage may improve the projections of changes in the global sea level and thermohaline circulation.

Corresponding author address: Jiping Liu, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: jliu26@albany.edu

Abstract

In recent decades, the Greenland ice sheet has experienced increased surface melt. However, the underlying cause of this increased surface melting and how it relates to cryospheric changes across the Arctic remain unclear. Here it is shown that an important contributing factor is the decreasing Arctic sea ice. Reduced summer sea ice favors stronger and more frequent occurrences of blocking-high pressure events over Greenland. Blocking highs enhance the transport of warm, moist air over Greenland, which increases downwelling infrared radiation, contributes to increased extreme heat events, and accounts for the majority of the observed warming trends. These findings are supported by analyses of observations and reanalysis data, as well as by independent atmospheric model simulations using a state-of-the-art atmospheric model that is forced by varying only the sea ice conditions. Reduced sea ice conditions in the model favor more extensive Greenland surface melting. The authors find a positive feedback between the variability in the extent of summer Arctic sea ice and melt area of the summer Greenland ice sheet, which affects the Greenland ice sheet mass balance. This linkage may improve the projections of changes in the global sea level and thermohaline circulation.

Corresponding author address: Jiping Liu, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: jliu26@albany.edu
Save
  • Abdalati, W., and K. Steffen, 2001: Greenland ice sheet melt extent: 1979–1999. J. Geophys. Res., 106, 33 983–33 988, doi:10.1029/2001JD900181.

    • Search Google Scholar
    • Export Citation
  • Alley, R., P. Clark, P. Huyberchts, and I. Joughin, 2005: Ice-sheet and sea level changes. Science, 310, 456–460, doi:10.1126/science.1114613.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., M. Shupe, D. Turner, V. Walden, K. Steffen, C. Cox, M. Kulie, N. Miller, and C. Pettersen, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83–86, doi:10.1038/nature12002.

    • Search Google Scholar
    • Export Citation
  • Box, J., X. Fettweis, J. Stroeve, M. Tedesco, D. Hall, and K. Steffen, 2012: Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere, 6, 821–839, doi:10.5194/tc-6-821-2012.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627–637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Collins, W., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19, 2144–2161, doi:10.1175/JCLI3760.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J., 2000: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2. National Snow and Ice Data Center, accessed February 2015, doi:10.5067/J6JQLS9EJ5HU.

  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324–327, doi:10.1126/science.1261768.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K., and S. Marshall, 2000: Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature, 404, 591–594, doi:10.1038/35007053.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. Wallace, D. Battisti, E. Steig, A. Gallant, H. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209–212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Dumont, M., and Coauthors, 2014: Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat. Geosci., 7, 509–512, doi:10.1038/ngeo2180.

    • Search Google Scholar
    • Export Citation
  • Enderlin, E., M. Howat, S. Jeong, M. Noh, J. van Angelen, and M. van den Broeke, 2014: An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett., 41, 866–872, doi:10.1002/2013GL059010.

    • Search Google Scholar
    • Export Citation
  • Fang, Z.-F., 2004: Statistical relationship between the Northern Hemisphere sea ice and atmospheric circulation during wintertime. Observation, Theory and Modeling of Atmospheric Variability, X. Zhu, Ed., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 3, World Scientific, 131–141.

    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002: Sea ice index, version 1. National Snow and Ice Data Center, accessed February 2015, doi:10.7265/N5QJ7F7W.

  • Fettweis, X., M. Tedesco, M. van den Broeke, and J. Ettema, 2011: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere, 5, 359–375, doi:10.5194/tc-5-359-2011.

    • Search Google Scholar
    • Export Citation
  • Francis, J., and S. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Francis, J., and S. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014 005, doi:10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Hakkinen, S., D. Hall, C. Shuman, D. Worthen, and N. DiGirolamo, 2014: Greenland ice sheet melt from MODIS and associated atmospheric variability. Geophys. Res. Lett., 41, 1600–1607, doi:10.1002/2013GL059185.

    • Search Google Scholar
    • Export Citation
  • Hall, R., R. Erdélyi, E. Hanna, J. Jones, and A. Scaife, 2015: Drivers of North Atlantic polar front jet stream variability. Int. J. Climatol., 35, 1697–1720, doi:10.1002/joc.4121.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. Jones, J. Cappelen, S. Mernild, L. Wood, K. Steffen, and P. Huybrechts, 2013a: The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland climate and ice melt/runoff. Int. J. Climatol., 33, 862–880, doi:10.1002/joc.3475.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2013b: Ice-sheet mass balance and climate change. Nature, 498, 51–59, doi:10.1038/nature12238.

  • Hanna, E., X. Fettweis, S. Mernild, J. Cappelen, M. Ribergaard, C. Shuman, K. Steffen, L. Wood, and T. Mote, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol., 34, 1022–1037, doi:10.1002/joc.3743.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., T. Cropper, P. Jones, A. Scaife, and R. Allan, 2015: Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland blocking index. Int. J. Climatol., 35, 2540–2554, doi:10.1002/joc.4157.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. Meehl, W. Han, and J. Yin, 2011: Effect of the potential melting of the Greenland ice sheet on the meridional overturning circulation and global climate in the future. Deep-Sea Res. II, 58, 1914–1926, doi:10.1016/j.dsr2.2010.10.069.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M., R. Graversen, T. Economou, and M. Tjernström, 2014: The importance of spring atmospheric conditions for predictions of the Arctic summer sea ice extent. Geophys. Res. Lett., 41, 5288–5296, doi:10.1002/2014GL060826.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. Curry, H. Wang, M. Song, and R. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 4074–4079, doi:10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Liu, J., M. Song, R. Horton, and Y. Hu, 2013: Reducing spread in climate model projections of a September ice-free Arctic. Proc. Natl. Acad. Sci. USA, 110, 12 571–12 576, doi:10.1073/pnas.1219716110.

    • Search Google Scholar
    • Export Citation
  • Markus, T., J. C. Stroeve, and J. Miller, 2009: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res., 114, C12024, doi:10.1029/2009JC005436.

    • Search Google Scholar
    • Export Citation
  • Meier, M., M. Dyurgerov, U. Rick, S. O’Neel, W. Pfeffer, R. Anderson, S. Anderson, and A. Glazovsky, 2007: Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317, 1064–1067, doi:10.1126/science.1143906.

    • Search Google Scholar
    • Export Citation
  • Mernild, S., T. Mote, and G. Liston, 2011: Greenland ice sheet surface melt extent and trends: 1960–2010. J. Glaciol., 57, 621–628, doi:10.3189/002214311797409712.

    • Search Google Scholar
    • Export Citation
  • Mote, T., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, doi:10.1029/2007GL031976.

    • Search Google Scholar
    • Export Citation
  • Mote, T., M. Anderson, K. Kuivinen, and C. Rowe, 1993: Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet. Ann. Glaciol., 17, 233–238.

    • Search Google Scholar
    • Export Citation
  • Nghiem, S., and Coauthors, 2012: The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett., 39, L20502, doi:10.1029/2012GL053611.

    • Search Google Scholar
    • Export Citation
  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 7917–7932, doi:10.1175/JCLI-D-14-00822.1.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181–184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rennermalm, A., L. Smith, J. Stroeve, and V. Chu, 2009: Does sea ice influence Greenland ice sheet surface-melt? Environ. Res. Lett., 4, 024 011, doi:10.1088/1748-9326/4/2/024011.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. Box, E. Burgess, and E. Hanna, 2008: Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35, L20502, doi:10.1029/2008GL035417.

    • Search Google Scholar
    • Export Citation
  • Rossow, W., and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Screen, J., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Screen, J., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333–344, doi:10.1007/s00382-013-1830-9.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., and R. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 85–96, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Shannon, S., and Coauthors, 2013: Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proc. Natl. Acad. Sci. USA, 110, 14 156–14 161, doi:10.1073/pnas.1212647110.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 1183–1189, doi:10.1126/science.1228102.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P., S. Gupta, S. Cox, J. Mikovitz, T. Zhang, and L. Hinkelman, 2011: The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News, No. 21, GEWEX Project Office, Silver Spring, MD, 10–12.

    • Search Google Scholar
    • Export Citation
  • Sundal, A., A. Shepherd, P. Nienow, E. Hanna, S. Palmer, and P. Hubrechts, 2011: Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469, 521–524, doi:10.1038/nature09740.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., 2007: Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations. Geophys. Res. Lett., 34, L02504, doi:10.1029/2006GL028466.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., X. Fettweis, M. van den Broeke, R. van de Wal, C. Smeets, W. van de Berg, M. Serreze, and J. Box, 2011: The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett., 6, 014 005, doi:10.1088/1748-9326/6/1/014005.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. Box, and B. Wouters, 2013: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere, 7, 615–630, doi:10.5194/tc-7-615-2013.

    • Search Google Scholar
    • Export Citation
  • Thompson, D., and J. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89, doi:10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
  • Walsh, J., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 52–63, doi:10.1016/j.gloplacha.2014.03.003.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. Overland, 2012: Sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, doi:10.1029/2012GL052868.

    • Search Google Scholar
    • Export Citation
  • Zwally, J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen, 2002: Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297, 218–222, doi:10.1126/science.1072708.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2884 407 36
PDF Downloads 1447 171 16