Further Exploring and Quantifying Uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) Version 4 (v4)

Boyin Huang National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Boyin Huang in
Current site
Google Scholar
PubMed
Close
,
Peter W. Thorne Department of Geography, Maynooth University, Maynooth, Ireland

Search for other papers by Peter W. Thorne in
Current site
Google Scholar
PubMed
Close
,
Thomas M. Smith NOAA/STAR/SCSB and CICS/ESSIC University of Maryland, College Park, Maryland

Search for other papers by Thomas M. Smith in
Current site
Google Scholar
PubMed
Close
,
Wei Liu Scripps Institute of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Wei Liu in
Current site
Google Scholar
PubMed
Close
,
Jay Lawrimore National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Jay Lawrimore in
Current site
Google Scholar
PubMed
Close
,
Viva F. Banzon National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Viva F. Banzon in
Current site
Google Scholar
PubMed
Close
,
Huai-Min Zhang National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Huai-Min Zhang in
Current site
Google Scholar
PubMed
Close
,
Thomas C. Peterson National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Thomas C. Peterson in
Current site
Google Scholar
PubMed
Close
, and
Matthew Menne National Centers for Environmental Information, Asheville, North Carolina

Search for other papers by Matthew Menne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The uncertainty in Extended Reconstructed SST (ERSST) version 4 (v4) is reassessed based upon 1) reconstruction uncertainties and 2) an extended exploration of parametric uncertainties. The reconstruction uncertainty (Ur) results from using a truncated (130) set of empirical orthogonal teleconnection functions (EOTs), which yields an inevitable loss of information content, primarily at a local level. The Ur is assessed based upon 32 ensemble ERSST.v4 analyses with the spatially complete monthly Optimum Interpolation SST product. The parametric uncertainty (Up) results from using different parameter values in quality control, bias adjustments, and EOT definition etc. The Up is assessed using a 1000-member ensemble ERSST.v4 analysis with different combinations of plausible settings of 24 identified internal parameter values. At the scale of an individual grid box, the SST uncertainty varies between 0.3° and 0.7°C and arises from both Ur and Up. On the global scale, the SST uncertainty is substantially smaller (0.03°–0.14°C) and predominantly arises from Up. The SST uncertainties are greatest in periods and locales of data sparseness in the nineteenth century and relatively small after the 1950s. The global uncertainty estimates in ERSST.v4 are broadly consistent with independent estimates arising from the Hadley Centre SST dataset version 3 (HadSST3) and Centennial Observation-Based Estimates of SST version 2 (COBE-SST2). The uncertainty in the internal parameter values in quality control and bias adjustments can impact the SST trends in both the long-term (1901–2014) and “hiatus” (2000–14) periods.

Corresponding author address: Boyin Huang, NCEP, Center for Coasts, Oceans, and Geophysics, 151 Patton Ave., Asheville, NC 28801. E-mail: boyin.huang@noaa.gov

Abstract

The uncertainty in Extended Reconstructed SST (ERSST) version 4 (v4) is reassessed based upon 1) reconstruction uncertainties and 2) an extended exploration of parametric uncertainties. The reconstruction uncertainty (Ur) results from using a truncated (130) set of empirical orthogonal teleconnection functions (EOTs), which yields an inevitable loss of information content, primarily at a local level. The Ur is assessed based upon 32 ensemble ERSST.v4 analyses with the spatially complete monthly Optimum Interpolation SST product. The parametric uncertainty (Up) results from using different parameter values in quality control, bias adjustments, and EOT definition etc. The Up is assessed using a 1000-member ensemble ERSST.v4 analysis with different combinations of plausible settings of 24 identified internal parameter values. At the scale of an individual grid box, the SST uncertainty varies between 0.3° and 0.7°C and arises from both Ur and Up. On the global scale, the SST uncertainty is substantially smaller (0.03°–0.14°C) and predominantly arises from Up. The SST uncertainties are greatest in periods and locales of data sparseness in the nineteenth century and relatively small after the 1950s. The global uncertainty estimates in ERSST.v4 are broadly consistent with independent estimates arising from the Hadley Centre SST dataset version 3 (HadSST3) and Centennial Observation-Based Estimates of SST version 2 (COBE-SST2). The uncertainty in the internal parameter values in quality control and bias adjustments can impact the SST trends in both the long-term (1901–2014) and “hiatus” (2000–14) periods.

Corresponding author address: Boyin Huang, NCEP, Center for Coasts, Oceans, and Geophysics, 151 Patton Ave., Asheville, NC 28801. E-mail: boyin.huang@noaa.gov
Save
  • Bojinski, S., and Coauthors, 2014: The concept of essential climate variables in support of climate research, applications, and policy. Bull. Amer. Meteor. Soc., 95, 14311443, doi:10.1175/BAMS-D-13-00047.1.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., 1981: LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Amer. Stat., 35, 5465, doi:10.2307/2683591.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2008: Evaluation of the HadGEM2 model. Hadley Centre Tech. Note 74, Met Office, 47 pp. [Available online at www.metoffice.gov.uk/media/pdf/8/7/HCTN_74.pdf.]

  • Cowtan, K., and Coauthors, 2015: Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett., 42, 65266534, doi:10.1002/2015GL064888.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and D. E. Parker, 1995: Correction of instrumental biases in historical sea surface temperature data. Quart. J. Roy. Meteor. Soc., 121, 319367, doi:10.1002/qj.49712152206.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., and Coauthors, 2001: Global temperature change and its uncertainties since 1861. Geophys. Res. Lett., 28, 26212624, doi:10.1029/2001GL012877.

    • Search Google Scholar
    • Export Citation
  • Grumbine, R. W., 2014: Automated passive microwave sea ice concentration analysis at NCEP. NOAA MMAB Tech. Note 321, 39 pp.

  • Hartmann, D. L., and Coauthors, 2014: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, doi:10.1175/JCLI-D-12-00837.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., M. L’Heureux, J. Lawrimore, C. Liu, V. Banzon, Z.-Z. Hu, and A. Kumar, 2013: Why did large differences arise in the sea surface temperature datasets across the tropical Pacific during 2012? J. Atmos. Oceanic Technol., 30, 29442953, doi:10.1175/JTECH-D-13-00034.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015a: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., W. Wang, C. Liu, V. Banzon, H.-M. Zhang, and J. Lawrimore, 2015b: Bias adjustment of AVHRR SST and its impacts on two SST analyses. J. Atmos. Oceanic Technol., 32, 372387, doi:10.1175/JTECH-D-14-00121.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., 2014: A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys., 52, 132, doi:10.1002/2013RG000434.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, doi:10.1029/2010JD015218.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, doi:10.1029/2010JD015220.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and P. G. Challenor, 2006: Toward estimating climatic trends in SST. Part II: Random errors. J. Atmos. Oceanic Technol., 23, 476486, doi:10.1175/JTECH1844.1.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., J. J. Kennedy, D. I. Berry, and R. O. Smith, 2010: Effects of instrumentation changes on sea surface temperature measured in situ. Wiley Interdiscip. Rev.: Climate Change, 1, 718728, doi:10.1002/wcc.55.

    • Search Google Scholar
    • Export Citation
  • Liu, W., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part II: Parametric and structural uncertainty estimation. J. Climate, 28, 931951, doi:10.1175/JCLI-D-14-00007.1.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperatures since the late nineteenth century. J. Geophys. Res., 108 (D14), 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 2009: What’s new in version 2. [Available online at http://www.ncdc.noaa.gov/sst/papers/oisst_daily_v02r00_version2-features.pdf.]

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Shen, S. S. P., T. M. Smith, C. F. Ropelewski, and R. E. Livezey, 1998: An optimal regional averaging method with error estimates and a test using tropical Pacific SST data. J. Climate, 11, 23402350, doi:10.1175/1520-0442(1998)011<2340:AORAMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shen, S. S. P., A. N. Basist, G. Li, C. Williams, and T. R. Karl, 2004: Prediction of sea surface temperature from the Global Historical Climatology Network data. Environmetrics, 15, 233249, doi:10.1002/env.638.

    • Search Google Scholar
    • Export Citation
  • Shen, S. S. P., H. Yin, and T. M. Smith, 2007: An estimate of the error variance of the gridded GHCN monthly surface air temperature data. J. Climate, 20, 23212331, doi:10.1175/JCLI4121.1.

    • Search Google Scholar
    • Export Citation
  • Shen, S. S. P., N. Tafolla, T. M. Smith, and P. A. Arkin, 2014: Multivariate regression reconstruction and its sampling error for the quasi-global annual precipitation from 1900 to 2011. J. Atmos. Sci., 71, 32503268, doi:10.1175/JAS-D-13-0301.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperature based on COADS data (1854–1997). J. Climate, 16, 14951510, doi:10.1175/1520-0442-16.10.1495.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2005: A global merged land–air–sea surface temperature reconstruction based on historical observations (1880–1997). J. Climate, 18, 20212036, doi:10.1175/JCLI3362.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9, 14031420, doi:10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., S. Saha, and A. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435, doi:10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, doi:10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1627 370 30
PDF Downloads 517 111 7