Reproducibility of Summer Precipitation over Northern Eurasia in CMIP5 Multiclimate Models

Nagio Hirota National Institute of Polar Research, and Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Search for other papers by Nagio Hirota in
Current site
Google Scholar
PubMed
Close
,
Yukari N. Takayabu Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Search for other papers by Yukari N. Takayabu in
Current site
Google Scholar
PubMed
Close
, and
Atsushi Hamada Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Search for other papers by Atsushi Hamada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reproducibility of summer precipitation over northern Eurasia in climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is evaluated in comparison with several observational and reanalysis datasets. All CMIP5 models under- and overestimate precipitation over western and eastern Eurasia, respectively, and the reproducibility measured using the Taylor skill score is largely determined by the severity of these west–east precipitation biases. The following are the two possible causes for the precipitation biases: very little cloud cover and very strong local evaporation–precipitation coupling. The models underestimate cloud cover over Eurasia, allowing too much sunshine and leading to a warm bias at the surface. The associated cyclonic circulation biases in the lower troposphere weaken the modeled moisture transport from the Atlantic to western Eurasia and enhance the northward moisture flux along the eastern coast. Once the dry west and wet east biases appear in the models, they become amplified because of stronger evaporation–precipitation coupling. The CMIP5 models reproduce precipitation events well over a time scale of several days, including the associated low pressure systems and local convection. However, the modeled precipitation events are relatively weaker over western Eurasia and stronger over eastern Eurasia compared to the observations, and these are consistent with the biases found in the seasonal average fields.

Denotes Open Access content.

Corresponding author address: Nagio Hirota, National Institute of Polar Research, 10-3, Midoricho, Tachikawa, Tokyo 190-8518, Japan. E-mail: nagio@aori.u-tokyo.ac.jp

Abstract

Reproducibility of summer precipitation over northern Eurasia in climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is evaluated in comparison with several observational and reanalysis datasets. All CMIP5 models under- and overestimate precipitation over western and eastern Eurasia, respectively, and the reproducibility measured using the Taylor skill score is largely determined by the severity of these west–east precipitation biases. The following are the two possible causes for the precipitation biases: very little cloud cover and very strong local evaporation–precipitation coupling. The models underestimate cloud cover over Eurasia, allowing too much sunshine and leading to a warm bias at the surface. The associated cyclonic circulation biases in the lower troposphere weaken the modeled moisture transport from the Atlantic to western Eurasia and enhance the northward moisture flux along the eastern coast. Once the dry west and wet east biases appear in the models, they become amplified because of stronger evaporation–precipitation coupling. The CMIP5 models reproduce precipitation events well over a time scale of several days, including the associated low pressure systems and local convection. However, the modeled precipitation events are relatively weaker over western Eurasia and stronger over eastern Eurasia compared to the observations, and these are consistent with the biases found in the seasonal average fields.

Denotes Open Access content.

Corresponding author address: Nagio Hirota, National Institute of Polar Research, 10-3, Midoricho, Tachikawa, Tokyo 190-8518, Japan. E-mail: nagio@aori.u-tokyo.ac.jp
Save
  • Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14 48514 498, doi:10.1029/JC094iC10p14485.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Albergel, C., P. De Rosnay, G. Balsamo, L. Isaksen, and J. Muñoz-Sabater, 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeor., 13, 14421460, doi:10.1175/JHM-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., and Coauthors, 2006: NASA’s Modern Era Retrospective-Analysis for Research and Applications (MERRA). U.S. CLIVAR Variations, Vol. 4, No. 2, U.S. CLIVAR Office, Washington, DC, 5–8. [Available online at http://www.usclivar.org/sites/default/files/Variations-V4N2.pdf.]

  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 11811201, doi:10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, and E. E. Ebert, 1995: Sea-ice albedo climate feedback mechanism. J. Climate, 8, 240247, doi:10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Fukutomi, Y., K. Masuda, and T. Yasunari, 2004: Role of storm track activity in the interannual seesaw of summer precipitation over northern Eurasia. J. Geophys. Res., 109, D02109, doi:10.1029/2003JD003912.

  • Fukutomi, Y., K. Masuda, and T. Yasunari, 2007: Cyclone activity associated with the interannual seesaw oscillation of summer precipitation over northern Eurasia. Global Planet. Change, 56, 387398, doi:10.1016/j.gloplacha.2006.07.026.

    • Search Google Scholar
    • Export Citation
  • Fukutomi, Y., K. Masuda, and T. Yasunari, 2012: Spatiotemporal structures of the intraseasonal oscillations of precipitation over northern Eurasia during summer. Int. J. Climatol., 32, 710726, doi:10.1002/joc.2293.

    • Search Google Scholar
    • Export Citation
  • Hirota, N., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: The roles of convective entrainment in spatial distributions and temporal variations of precipitation over tropical oceans. J. Climate, 27, 87078723, doi:10.1175/JCLI-D-13-00701.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iwao, K., and M. Takahashi, 2008: A precipitation seesaw mode between northeast Asia and Siberia in summer caused by Rossby waves over the Eurasian continent. J. Climate, 21, 24012419, doi:10.1175/2007JCLI1949.1.

    • Search Google Scholar
    • Export Citation
  • Jacobeit, J., A. Philipp, and M. Nonnenmacher, 2006: Atmospheric circulation dynamics linked with prominent discharge events in central Europe. Hydrol. Sci. J., 51, 946965, doi:10.1623/hysj.51.5.946.

    • Search Google Scholar
    • Export Citation
  • Jakobson, E., and T. Vihma, 2010: Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int. J. Climatol., 30, 21752194, doi:10.1002/joc.2039.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice, 2012: Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, doi:10.1029/2011JD017139.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. G. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Search Google Scholar
    • Export Citation
  • Kattsov, V. M., J. E. Walsh, W. L. Chapman, V. A. Govorkova, T. V. Pavlova, and X. Zhang, 2007: Simulation and projection of Arctic freshwater budget components by the IPCC AR4 global climate models. J. Hydrometeor., 8, 571589, doi:10.1175/JHM575.1.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2002: Effects of large-scale mountains on surface climate—A coupled ocean-atmosphere general circulation model study. J. Meteor. Soc. Japan, 80, 11651181, doi:10.2151/jmsj.80.1165.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, doi:10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, doi:10.1175/JCLI-D-13-00474.1.

    • Search Google Scholar
    • Export Citation
  • Nuissier, O., B. Joly, A. Joly, V. Ducrocq, and P. Arbogast, 2011: A statistical downscaling to identify the large-scale circulation patterns associated with heavy precipitation events over southern France. Quart. J. Roy. Meteor. Soc., 137, 18121827, doi:10.1002/qj.866.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972, doi:10.1029/1998JD200026.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311, doi:10.1175/BAMS-89-3-303.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., and S. Nigam, 2005: Warm season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18, 18081830, doi:10.1175/JCLI3343.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and A. J. Etringer, 2003: Precipitation characteristics of the Eurasian Arctic drainage system. Int. J. Climatol., 23, 12671291, doi:10.1002/joc.941.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. H. Lynch, and M. P. Clark, 2001: The Arctic frontal zone as seen in the NCEP–NCAR reanalysis. J. Climate, 14, 15501567, doi:10.1175/1520-0442(2001)014<1550:TAFZAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and F. Lo, 2005: Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon. Wea. Rev., 133, 34073430, doi:10.1175/MWR3047.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/2006/14615-newsletter-no110-winter-200607.pdf.]

  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70 n and its impact on moisture transport into the arctic. Tellus, 60A, 570586, doi:10.1111/j.1600-0870.2008.00314.x.

    • Search Google Scholar
    • Export Citation
  • Stucki, P., R. Rickli, S. Brönnimann, O. Martius, H. Wanner, D. Grebner, and J. Luterbacher, 2012: Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868. Meteor. Z., 21, 531550, doi:10.1127/0941-2948/2012/368.

    • Search Google Scholar
    • Export Citation
  • Tachibana, Y., K. Oshima, and M. Ogi, 2008: Seasonal and interannual variations of Amur River discharge and their relationships to large-scale atmospheric patterns and moisture fluxes. J. Geophys. Res., 113, D16102, doi:10.1029/2007JD009555.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., T. J. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transport from ocean to land and global energy flows reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Troy, T. J., J. Sheffield, and E. F. Wood, 2011: Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources. J. Climate, 24, 32723293, doi:10.1175/2011JCLI3936.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Walsh, J. E., and W. L. Chapman, 1990: Arctic contribution to upper-ocean variability in the North Atlantic. J. Climate, 3, 14621473, doi:10.1175/1520-0442(1990)003<1462:ACTUOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392588, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, D., D. Kane, Z. Zhang, D. Legates, and B. Goodison, 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32, L19501, doi:10.1029/2005GL024057.

  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., M. Watanabe, A. Abe-Ouchi, H. Shiogama, and T. Ogura, 2014: Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM. Climate Dyn., 42, 16131630, doi:10.1007/s00382-013-1875-9.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Barlage, C. Castro, and K. Fling, 2010: Comparison of land–precipitation coupling strength using observations and models. J. Hydrometeor., 11, 979994, doi:10.1175/2010JHM1226.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 49 4
PDF Downloads 101 18 0