Surface Arctic Amplification Factors in CMIP5 Models: Land and Oceanic Surfaces and Seasonality

Alexandre Laîné National Institute of Polar Research, Tokyo, and Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Alexandre Laîné in
Current site
Google Scholar
PubMed
Close
,
Masakazu Yoshimori Faculty of Environmental Earth Science, and Arctic Research Center, Hokkaido University, Sapporo, and Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Masakazu Yoshimori in
Current site
Google Scholar
PubMed
Close
, and
Ayako Abe-Ouchi Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, and National Institute of Polar Research, Tokyo, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Ayako Abe-Ouchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic amplification (AA) is a major characteristic of observed global warming, yet the different mechanisms responsible for it and their quantification are still under investigation. In this study, the roles of different factors contributing to local surface warming are quantified using the radiative kernel method applied at the surface after 100 years of global warming under a representative concentration pathway 4.5 (RCP4.5) scenario simulated by 32 climate models from phase 5 of the Coupled Model Intercomparison Project. The warming factors and their seasonality for land and oceanic surfaces were investigated separately and for different domains within each surface type where mechanisms differ. Common factors contribute to both land and oceanic surface warming: tropospheric-mean atmospheric warming and greenhouse gas increases (mostly through water vapor feedback) for both tropical and Arctic regions, nonbarotropic warming and surface warming sensitivity effects (negative in the tropics, positive in the Arctic), and warming cloud feedback in the Arctic in winter. Some mechanisms differ between land and oceanic surfaces: sensible and latent heat flux in the tropics, albedo feedback peaking at different times of the year in the Arctic due to different mean latitudes, a very large summer energy uptake and winter release by the Arctic Ocean, and a large evaporation enhancement in winter over the Arctic Ocean, whereas the peak occurs in summer over the ice-free Arctic land. The oceanic anomalous energy uptake and release is further studied, suggesting the primary role of seasonal variation of oceanic mixed layer temperature changes.

Denotes Open Access content.

Corresponding author address: Alexandre Laîné, National Institute of Polar Research, Arctic Environment Research Center, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan. E-mail: laine@aori.u-tokyo.ac.jp

Abstract

Arctic amplification (AA) is a major characteristic of observed global warming, yet the different mechanisms responsible for it and their quantification are still under investigation. In this study, the roles of different factors contributing to local surface warming are quantified using the radiative kernel method applied at the surface after 100 years of global warming under a representative concentration pathway 4.5 (RCP4.5) scenario simulated by 32 climate models from phase 5 of the Coupled Model Intercomparison Project. The warming factors and their seasonality for land and oceanic surfaces were investigated separately and for different domains within each surface type where mechanisms differ. Common factors contribute to both land and oceanic surface warming: tropospheric-mean atmospheric warming and greenhouse gas increases (mostly through water vapor feedback) for both tropical and Arctic regions, nonbarotropic warming and surface warming sensitivity effects (negative in the tropics, positive in the Arctic), and warming cloud feedback in the Arctic in winter. Some mechanisms differ between land and oceanic surfaces: sensible and latent heat flux in the tropics, albedo feedback peaking at different times of the year in the Arctic due to different mean latitudes, a very large summer energy uptake and winter release by the Arctic Ocean, and a large evaporation enhancement in winter over the Arctic Ocean, whereas the peak occurs in summer over the ice-free Arctic land. The oceanic anomalous energy uptake and release is further studied, suggesting the primary role of seasonal variation of oceanic mixed layer temperature changes.

Denotes Open Access content.

Corresponding author address: Alexandre Laîné, National Institute of Polar Research, Arctic Environment Research Center, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan. E-mail: laine@aori.u-tokyo.ac.jp
Save
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, doi:10.1007/s00382-005-0018-3.

    • Search Google Scholar
    • Export Citation
  • Cai, M., 2005: Dynamical amplification of polar warming. Geophys. Res. Lett., 32, L22710, doi:10.1029/2005GL024481.

  • Colman, R., and B. J. McAvaney, 1997: A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments. J. Geophys. Res., 102, 19 38319 402, doi:10.1029/97JD00206.

    • Search Google Scholar
    • Export Citation
  • Crook, J. A., P. M. Forster, and N. Stuber, 2011: Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate, 24, 35753592, doi:10.1175/2011JCLI3863.1.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 83738379, doi:10.1175/JCLI-D-12-00490.1.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, doi:10.1007/s00382-009-0535-6.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 5356, doi:10.1038/nature06502.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Joshi, M., K. Shine, M. Ponater, N. Stuber, R. Sausen, and L. Li, 2003: A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change. Climate Dyn., 20, 843854, doi:10.1007/s00382-003-0305-9.

    • Search Google Scholar
    • Export Citation
  • Lu, J. H., and M. Cai, 2009a: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36, L16704, doi:10.1029/2009GL040133.

    • Search Google Scholar
    • Export Citation
  • Lu, J. H., and M. Cai, 2009b: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873885, doi:10.1007/s00382-008-0425-3.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2011: Ocean heat transport as a cause for model uncertainty in projected Arctic warming. J. Climate, 24, 14511460, doi:10.1175/2010JCLI3713.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, doi:10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2006: Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Climate Dyn., 26, 513529, doi:10.1007/s00382-005-0081-9.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., 1984: On the cause of ‘fram’ type seasonal change in diurnal amplitude of air temperature in polar regions. J. Climatol., 4, 325338, doi:10.1002/joc.3370040309.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., 2012: Enhanced temperature variability in high-altitude climate change. Theor. Appl. Climatol., 110, 499508, doi:10.1007/s00704-012-0687-x.

    • Search Google Scholar
    • Export Citation
  • O’ishi, R., and A. Abe-Ouchi, 2009: Influence of dynamic vegetation on climate change arising from increasing CO2. Climate Dyn., 33, 645663, doi:10.1007/s00382-009-0611-y.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., and B. C. Elder, 2001: Temporal evolution of Arctic sea-ice temperature. Ann. Glaciol., 33, 207211, doi:10.3189/172756401781818158.

    • Search Google Scholar
    • Export Citation
  • Persson, P. Ola G., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, doi:10.1038/nclimate2554.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Sejas, S. A., M. Cai, A. Hu, G. A. Meehl, W. Washington, and P. C. Taylor, 2014: Individual feedback contributions to the seasonality of surface warming. J. Climate, 27, 56535669, doi:10.1175/JCLI-D-13-00658.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., and G. Faluvegi, 2009: Climate response to regional radiative forcing during the twentieth century. Nat. Geosci., 2, 294300, doi:10.1038/ngeo473.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., 2006: Impact of latent heat release on polar climate. Geophys. Res. Lett., 33, L07716, doi:10.1029/2005GL025607.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: A summary of the CMIP5 experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17, 603615, doi:10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., T. Yokohata, and A. Abe-Ouchi, 2009: A comparison of climate feedback strength between CO2 doubling and LGM experiments. J. Climate, 22, 33743395, doi:10.1175/2009JCLI2801.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., J. C. Hargreaves, J. D. Annan, T. Yokohata, and A. Abe-Ouchi, 2011: Dependency of feedbacks on forcing and climate state in physics parameter ensembles. J. Climate, 24, 64406455, doi:10.1175/2011JCLI3954.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., A. Abe-Ouchi, M. Watanabe, A. Oka, and T. Ogura, 2014a: Robust seasonality of Arctic warming processes in two different versions of the MIROC GCM. J. Climate, 27, 63586375, doi:10.1175/JCLI-D-14-00086.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., M. Watanabe, A. Abe-Ouchi, H. Shiogama, and T. Ogura, 2014b: Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM. Climate Dyn., 42, 16131630, doi:10.1007/s00382-013-1875-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 751 232 17
PDF Downloads 589 139 18