Macrophysical, Microphysical, and Radiative Properties of Tropical Mesoscale Convective Systems over Their Life Cycle

Dominique Bouniol CNRM/GAME, Météo-France/CNRS, Toulouse, France

Search for other papers by Dominique Bouniol in
Current site
Google Scholar
PubMed
Close
,
Rémy Roca LEGOS, CNRS, Toulouse, France

Search for other papers by Rémy Roca in
Current site
Google Scholar
PubMed
Close
,
Thomas Fiolleau CNRM/GAME, Météo-France/CNRS, Toulouse, France

Search for other papers by Thomas Fiolleau in
Current site
Google Scholar
PubMed
Close
, and
D. Emmanuel Poan CNRM/GAME, Météo-France/CNRS, Toulouse, France

Search for other papers by D. Emmanuel Poan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale convective systems (MCSs) are important drivers of the atmospheric large-scale circulation through their associated diabatic heating profile. Taking advantage of recent tracking techniques, this study investigates the evolution of macrophysical, microphysical, and radiative properties over the MCS life cycle by merging geostationary and polar-orbiting satellite data. These observations are performed in three major convective areas: continental West Africa, the adjacent Atlantic Ocean, and the open Indian Ocean. MCS properties are also investigated according to internal subregions (convective, stratiform, and nonprecipitating anvil). Continental MCSs show a specific life cycle, with more intense convection at the beginning. Larger and denser hydrometeors are thus found at higher altitudes, as well as up to the cirriform subregion. Oceanic MCSs have more constant reflectivity values, suggesting a less intense convective updraft, but more persistent intensity. A layer of small crystals is found in all subregions, but with a depth that varies according to the MCS subregion and life cycle. Radiative properties are also examined. It appears that the evolution of large and dense hydrometeors tends to control the evolution of the cloud albedo and the outgoing longwave radiation. The impact of dense hydrometeors, detrained from the convective towers, is also seen in the radiative heating profiles, in particular in the shortwave domain. A dipole of cooling near the cloud top and heating near the cloud base is found in the longwave; this cooling intensifies near the end of the life cycle.

Corresponding author address: Dominique Bouniol, CNRM-GAME/GMME/MOANA, 42 avenue Gaspard Coriolis, 31057 Toulouse CEDEX, France. E-mail: dominique.bouniol@meteo.fr

Abstract

Mesoscale convective systems (MCSs) are important drivers of the atmospheric large-scale circulation through their associated diabatic heating profile. Taking advantage of recent tracking techniques, this study investigates the evolution of macrophysical, microphysical, and radiative properties over the MCS life cycle by merging geostationary and polar-orbiting satellite data. These observations are performed in three major convective areas: continental West Africa, the adjacent Atlantic Ocean, and the open Indian Ocean. MCS properties are also investigated according to internal subregions (convective, stratiform, and nonprecipitating anvil). Continental MCSs show a specific life cycle, with more intense convection at the beginning. Larger and denser hydrometeors are thus found at higher altitudes, as well as up to the cirriform subregion. Oceanic MCSs have more constant reflectivity values, suggesting a less intense convective updraft, but more persistent intensity. A layer of small crystals is found in all subregions, but with a depth that varies according to the MCS subregion and life cycle. Radiative properties are also examined. It appears that the evolution of large and dense hydrometeors tends to control the evolution of the cloud albedo and the outgoing longwave radiation. The impact of dense hydrometeors, detrained from the convective towers, is also seen in the radiative heating profiles, in particular in the shortwave domain. A dipole of cooling near the cloud top and heating near the cloud base is found in the longwave; this cooling intensifies near the end of the life cycle.

Corresponding author address: Dominique Bouniol, CNRM-GAME/GMME/MOANA, 42 avenue Gaspard Coriolis, 31057 Toulouse CEDEX, France. E-mail: dominique.bouniol@meteo.fr
Save
  • Ackerman, T. P., K.-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rate in tropical anvils. J. Atmos. Sci., 45, 16061623, doi:10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., 1998: Algorithm 2A23-rain type classification. Proc. Symp. on the Precipitation Observation from Non-Sun Synchronous Orbit, Nagoya, Japan, 215220.

  • Behrangi, A., T. Kubar, and B. Lambrigtsen, 2012: Phenomenological description of tropical clouds using CloudSat cloud classification. Mon. Wea. Rev., 140, 32353249, doi:10.1175/MWR-D-11-00247.1.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., J. Delanoë, C. Duroure, A. Protat, V. Giraud, and G. Penide, 2010: Microphysical characterisation of West African MCS anvils. Quart. J. Roy. Meteor. Soc., 136 (Suppl.), 323344, doi:10.1002/qj.557.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., M. Zhang, B. A. Wielicki, D. F. Young, X.-L. Zhou, and Y. Nikitenko, 2001: The influence of the 1998 El Niño upon cloud-radiative forcing over the Pacific warm pool. J. Climate, 14, 21292137, doi:10.1175/1520-0442(2001)014<2129:TIOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2009: Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quart. J. Roy. Meteor. Soc., 135, 305317, doi:10.1002/qj.389.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2011: Leading and trailing anvil clouds of West African squall lines. J. Atmos. Sci., 68, 11141123, doi:10.1175/2011JAS3580.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and W. Kovari, 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15, 25972615, doi:10.1175/1520-0442(2002)015<2597:CPOTPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, R. S. Hemler, and S. Fan, 2001: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463, doi:10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evaristo, R., G. Scialom, N. Viltard, and Y. Lemaître, 2010: Polarimetric signature and hydrometeor classification of West Africa squall lines. Quart. J. Roy. Meteor. Soc., 136 (Suppl.), 272288, doi:10.1002/qj.561.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., X. Dong, B. Xi, C. Schumacher, P. Minnis, and M. Khaiyer, 2011: Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems. J. Geophys. Res., 116, D23202, doi:10.1029/2011JD016451.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, 2012: Life cycle of midlatitude deep convective systems in a Lagrangian framework. J. Geophys. Res., 117, D23201, doi:10.1029/2012JD018362.

    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013a: Composite life cycle of tropical mesoscale convective systems from geostationary and low Earth orbit satellite observations: Method and sampling considerations. Quart. J. Roy. Meteor. Soc., 139, 941953, doi:10.1002/qj.2174.

    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013b: An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens., 51, 43024315, doi:10.1109/TGRS.2012.2227762.

    • Search Google Scholar
    • Export Citation
  • Fontaine, E., A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, and A. Protat, 2014: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos. Chem. Phys., 14, 11 36711 392, doi:10.5194/acp-14-11367-2014.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060, doi:10.1175/JCLI4297.1.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., J. E. Russell, and J. E. Harries, 2004: Cloud radiative forcing in Pacific, African, and Atlantic tropical convective regions. J. Climate, 17, 31923202, doi:10.1175/1520-0442(2004)017<3192:CRFIPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, E. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18 68718 703, doi:10.1029/JD095iD11p18687.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14, 44954511, doi:10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., F. Roux, and P. Amayenc, 1988: Comparison of two methods for the retrieval of thermodynamic and microphysical variables from Doppler radar measurements: Application to the case of a tropical squall line. J. Atmos. Sci., 45, 12851303, doi:10.1175/1520-0469(1988)045<1285:COTMFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. H. Vonder Haar, T. L’Ecuyer, and D. Henderson, 2013: Radiative heating characteristics of Earth’s cloudy atmosphere from vertically resolved active sensors. Geophys. Res. Lett., 40, 624630, doi:10.1002/grl.50145.

    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, doi:10.1175/JAMC-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and G. M. McFarqhar, 1996: High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci., 53, 24242451, doi:10.1175/1520-0469(1996)053<2424:HAOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410.

  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541576, doi:10.1029/RG019i004p00541.

  • Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics. A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys., 53, 9941021, doi:10.1002/2015RG000488.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2003: Radiative and microphysical characteristics of deep convective systems in the tropical western Pacific. J. Appl. Meteor., 42, 12341254, doi:10.1175/1520-0450(2003)042<1234:RAMCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO‐, CloudSat‐, and MODIS‐derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7, 559565, doi:10.1175/1520-0442(1994)007<0559:OTONCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and V. Ramanathan, 1990: Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR Community Climate Model. J. Geophys. Res., 95, 11 67911 698, doi:10.1029/JD095iD08p11679.

    • Search Google Scholar
    • Export Citation
  • Kondo, Y., A. Higuchi, and K. Nakamura, 2006: Small-scale cloud activity over the Maritime Continent and the western Pacific as revealed by satellite data. Mon. Wea. Rev., 134, 15811599, doi:10.1175/MWR3132.1.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze, Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669679, doi:10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res., 116, D20209, doi:10.1029/2011JD016076.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse, Jr., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Li, W., and C. Schumacher, 2011: Thick anvils as viewed by the TRMM Precipitation Radar. J. Climate, 24, 17181735, doi:10.1175/2010JCLI3793.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., C. Schumacher, and S. A. McFarlane, 2013: Radiative heating of the ISCCP upper level cloud regimes and its impact on the large-scale tropical circulation. J. Geophys. Res. Atmos., 118, 592604, doi:10.1002/jgrd.50114.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar–lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, doi:10.1002/2013JD021374.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981415, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchand, R. G., G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., S. A. McFarlane, M. A. Miller, and K. L. Johnson, 2007: Cloud properties and associated radiative heating rates in the tropical western Pacific. J. Geophys. Res., 112, D05201, doi:10.1029/2006JD007555.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: The life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, doi:10.1002/qj.49712757208.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., and A. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., and A. Heymsfield, 1997: Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX. J. Atmos. Sci., 54, 21872200, doi:10.1175/1520-0469(1997)054<2187:POTCIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Defining mesoscale convective system by their 85-GHz ice-scattering signatures. Bull. Amer. Soc., 77, 11791189, doi:10.1175/1520-0477(1996)077<1179:DMCSBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muller, C., and S. Bony, 2015: What favors convective aggregation, and why? Geophys. Res. Lett., 42, 56265634, doi:10.1002/2015GL064260.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nowicki, S. M., and C. J. Merchant, 2004: Observations of diurnal and spatial variability of radiative forcing by equatorial deep convective clouds. J. Geophys. Res., 109, D11202, doi:10.1029/2003JD004176.

    • Search Google Scholar
    • Export Citation
  • Pope, M., C. Jakob, and M. J. Reeder, 2008: Convective systems of the north Australian monsoon. J. Climate, 21, 50915112, doi:10.1175/2008JCLI2304.1.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., R. A. Houze Jr., A. Kumar, and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 26622681, doi:10.1175/JAS-D-11-0251.1.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., and J. Srinivasan, 2000: Net cloud radiative forcing at the top of the atmosphere in the Asian monsoon region. J. Climate, 13, 650657, doi:10.1175/1520-0442(2000)013<0650:NCRFAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Roca, R., and V. Ramanathan, 2000: Scale dependence of monsoonal convective systems over the Indian Ocean. J. Climate, 13, 12861298, doi:10.1175/1520-0442(2000)013<1286:SDOMCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roca, R., J. Aublanc, P. Chambon, T. Fiolleau, and N. Viltard, 2014: Robust observational quantification of the contribution of mesoscale convective systems to rainfall in the tropics. J. Climate, 27, 49524958, doi:10.1175/JCLI-D-13-00628.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255, doi:10.1256/qj.05.121.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, doi:10.1175/JAS3938.1.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127, 17771795, doi:10.1175/1520-0493(1999)127<1777:OEOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., J. Schmetz, R. Stuhlmann, and J.-Y. Lee, 2006: Dry bias in satellite-derived clear-sky water vapor and its contribution to longwave cloud radiative forcing. J. Climate, 19, 55705580, doi:10.1175/JCLI3948.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Thampi, B. V., and R. Roca, 2014: Investigation of negative cloud radiative forcing over the Indian subcontinent and adjacent oceans during the summer monsoon season. Atmos. Chem. Phys., 14, 67396758, doi:10.5194/acp-14-6739-2014.

    • Search Google Scholar
    • Export Citation
  • Tobin, I., S. Bony, and R. Roca, 2012: Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. J. Climate, 25, 68856904, doi:10.1175/JCLI-D-11-00258.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and G. L. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inferences from winter MONEX. J. Atmos. Sci., 37, 15211541, doi:10.1175/1520-0469-37.7.1521.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., and V. Ramanathan, 2001: Scale dependence of the thermodynamic forcing of tropical monsoon clouds: Results from TRMM observations. J. Climate, 14, 15111524, doi:10.1175/1520-0442(2001)014<1511:SDOTTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, M., and R. A. Houze Jr., 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519, doi:10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2015: Convective intensity, vertical precipitation structures, and microphysics of two contrasting convective regimes during the 2008 TiMREX. J. Geophys. Res. Atmos., 120, 40004016, doi:10.1002/2014JD022927.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23, 58645888, doi:10.1175/2010JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., R. A. Houze Jr., and A. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 16531674, doi:10.1175/2011JAS3687.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, doi:10.1002/qj.49712454504.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 589 230 41
PDF Downloads 553 233 42