Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System, Version 5 (GEOS-5)

Feng Li * Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Feng Li in
Current site
Google Scholar
PubMed
Close
,
Yury V. Vikhliaev * Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Yury V. Vikhliaev in
Current site
Google Scholar
PubMed
Close
,
Paul A. Newman Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Paul A. Newman in
Current site
Google Scholar
PubMed
Close
,
Steven Pawson Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Steven Pawson in
Current site
Google Scholar
PubMed
Close
,
Judith Perlwitz Cooperative Institute for Research in Environmental Sciences, University of Colorado, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Judith Perlwitz in
Current site
Google Scholar
PubMed
Close
,
Darryn W. Waugh Department of Earth and Planetary Science, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Darryn W. Waugh in
Current site
Google Scholar
PubMed
Close
, and
Anne R. Douglass Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Anne R. Douglass in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer’s evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. This study investigates the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960–2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model’s climatology is evaluated using observations and reanalysis. Comparison of the 1979–2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November–January. It enhances stratosphere–troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean meridional overturning circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

Corresponding author address: Feng Li, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: feng.li@nasa.gov

Abstract

Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer’s evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. This study investigates the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960–2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model’s climatology is evaluated using observations and reanalysis. Comparison of the 1979–2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November–January. It enhances stratosphere–troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean meridional overturning circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

Corresponding author address: Feng Li, Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: feng.li@nasa.gov
Save
  • Bitz, C. M., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys. Res. Lett., 39, L20705, doi:10.1029/2012GL053393.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, doi:10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Cai, W., 2006: Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett., 33, L03712, doi:10.1029/2005GL024911.

    • Search Google Scholar
    • Export Citation
  • Calisto, M., D. Folini, M. Wild, and L. Bengtsson, 2014: Cloud radiative forcing intercomparison between fully coupled CMIP5 models and CERES satellite data. Ann. Geophys., 32, 793807, doi:10.5194/angeo-32-793-2014.

    • Search Google Scholar
    • Export Citation
  • Considine, D. B., A. R. Douglass, P. S. Connell, D. E. Kinnison, and D. A. Rotman, 2000: A polar stratospheric cloud parameterization for the global modeling initiative three-dimensional model and its response to stratospheric aircraft. J. Geophys. Res., 105, 39553973, doi:10.1029/1999JD900932.

    • Search Google Scholar
    • Export Citation
  • Crook, J. A., N. P. Gillett, and S. P. E. Keeley, 2008: Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone. Geophys. Res. Lett., 35, L07806, doi:10.1029/2007GL032698.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., and S. R. Kawa, 1999: Contrast between 1992 and 1997 high-latitude spring Halogen Occultation Experiment observations of lower stratospheric HCL. J. Geophys. Res., 104, 18 73918 754, doi:10.1029/1999JD900281.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., R. S. Stolarski, S. E. Strahan, and L. D. Oman, 2012: Understanding differences in upper stratospheric ozone response to changes in chlorine and temperature as computed using CCMVal-2 models. J. Geophys. Res., 117, D16306, doi:10.1029/2012JD017483.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., and A. M. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. J. Climate, 26, 71987220, doi:10.1175/JCLI-D-12-00504.1.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry–climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303, doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., T. Shepherd, and D. Waugh, Eds., 2010: SPARC CCMVal report on the evaluation of chemistry–climate models. SPARC Rep. 5, WCRP-132, WMO/TD-No. 1526. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/.]

  • Farneti, R., and T. Delworth, 2010: The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. J. Phys. Oceanogr., 40, 23482354, doi:10.1175/2010JPO4480.1.

    • Search Google Scholar
    • Export Citation
  • Gabriel, A., D. Peters, I. Kirchner, and H. F. Graf, 2007: Effect of zonally asymmetric ozone on stratospheric temperature and planetary wave propagation. Geophys. Res. Lett., 34, L06807, doi:10.1029/2006GL028998.

    • Search Google Scholar
    • Export Citation
  • Gagné, M.-E., N. P. Gillett, and J. C. Fyfe, 2015: Observed and simulated changes in Antarctic sea ice extent over the past 50 years. Geophys. Res. Lett., 41, 9095, doi:10.1002/2014GL062231.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275, doi:10.1126/science.1087440.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., J. F. Scinocca, D. A. Plummer, and M. C. Reader, 2009: Sensitivity of climate to dynamically-consistent zonal asymmetries in ozone. Geophys. Res. Lett., 36, L10809, doi:10.1029/2009GL037246.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2010: Elements of MOM4p1. GFDL Ocean Group Tech. Rep. 6, 444 pp. [Available online at https://gfdl.noaa.gov/cms-filesystem-action/model_development/ocean/mom-guide4p1.pdf]

  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, doi:10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-Ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Grytsai, A. V., O. M. Evtushevsky, O. V. Agapitov, A. R. Klekociuk, and G. P. Milinevsky, 2007: Structure and long-term change in the zonal asymmetry in Antarctic total ozone during spring. Ann. Geophys., 25, 361374, doi:10.5194/angeo-25-361-2007.

    • Search Google Scholar
    • Export Citation
  • Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 81088131, doi:10.1175/JCLI-D-11-00668.1.

    • Search Google Scholar
    • Export Citation
  • Hill, C., C. Deluca, Balaji, M. Suarez, and A. Da Silva, 2004: The architecture of the Earth System Modeling Framework. Comput. Sci. Eng., 6, 1828, doi:10.1109/MCISE.2004.1255817.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos Sea Ice Model Documentation and Software Manual (version 4.0). Tech. Rep., Los Alamos National Laboratory, 116 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis. Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Lauer, A., and K. Hamilton, 2013: Simulating clouds with global climate models: a comparison of CMIP5 results with CMIP3 and satellite data. J. Climate, 26, 38233845, doi:10.1175/JCLI-D-12-00451.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T., D. E. Waliser, J. L. F. Li, F. W. Landerer, and M. M. Gierach, 2013: Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J. Climate, 26, 58105826, doi:10.1175/JCLI-D-12-00591.1.

    • Search Google Scholar
    • Export Citation
  • Lenton, A., F. Codron, L. Bopp, N. Metzl, P. Cadule, A. Tagliabue, and J. Le Sommer, 2009: Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett., 36, L12606, doi:10.1029/2009GL038227.

    • Search Google Scholar
    • Export Citation
  • Levitus, S. E., 1982: Climatological Atlas of the World Ocean. NOAA Professional Paper 13, 173 pp. and 17 microfiche.

  • Li, F., J. Austin, and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry–climate simulations. J. Climate, 21, 4057, doi:10.1175/2007JCLI1663.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geophys., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I. S. Song, and A. Eichmann, 2012: The GEOS-5 atmospheric general circulation model: Mean climate and development from MERRA to Fortuna. Technical Report Series on Global Modeling and Data Assimilation, Rep. 28, 115 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Molod484.pdf.]

  • Nathan, T. R., and E. C. Cordero, 2007: An ozone-modified refractive index for vertically propagating planetary waves. J. Geophys. Res., 112, D02105, doi:10.1029/2006JD007357.

    • Search Google Scholar
    • Export Citation
  • Neely, R. R., D. R. Marsh, K. L. Smith, S. M. Davis, and L. M. Polvani, 2014: Biases in Southern Hemisphere climate trends induced by coarsely specifying the temporal resolution of stratospheric ozone. Geophys. Res. Lett., 41, 86028610, doi:10.1002/2014GL061627.

    • Search Google Scholar
    • Export Citation
  • Oman, L. D., and A. R. Douglass, 2014: Improvements in total column ozone in GEOSCCM and comparisons with a new ozone-depleting substances scenario. J. Geophys. Res. Atmos., 119, 56135624, doi:10.1002/2014JD021590.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., R. S. Stolarski, A. R. Douglass, P. A. Newman, J. E. Nielsen, S. M. Frith, and M. L. Gupta, 2008: Goddard Earth Observing System chemistry–climate model simulations of stratosphere ozone–temperature coupling between 1950 and 2005. J. Geophys. Res., 113, D12103, doi:10.1029/2007JD009511.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett., 40, 31953199, doi:10.1002/grl.50578.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., and L. M. Polvani, 2014: Climate system response to stratospheric ozone depletion and recovery. Quart. J. Roy. Meteor. Soc., 140, 24012419, doi:10.1002/qj.2330.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 14671479, doi:10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., K. W. Dixon, A. G. Gnanadesikan, R. J. Stouffer, and J. R. Toggweiler, 2006: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Climate, 19, 63826390, doi:10.1175/JCLI3984.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B., T. Wigley, J. Boyle, D. Gaffen, J. Hnilo, D. Nychka, D. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, doi:10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., B. A. Boville, D. Kinnison, and R. R. Garcia, 2005: The effects of interactive ozone chemistry on simulations of the middle atmosphere. Geophys. Res. Lett., 32, L07811, doi:10.1029/2004GL022131.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., A. Santoso, A. S. Taschetto, C. C. Ummenhofer, J. Trevena, and M. H. England, 2009: Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AP4 climate models. J. Climate, 22, 30473078, doi:10.1175/2008JCLI2827.1.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., 1986: On the modelled thermal response of the Antarctic stratosphere to a depletion of ozone. Geophys. Res. Lett., 13, 13311334, doi:10.1029/GL013i012p01331.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37, L18502, doi:10.1029/2010GL044301.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2014: The Antarctic sea ice response to the ozone hole in climate models. J. Climate, 27, 13361342, doi:10.1175/JCLI-D-13-00590.1.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. C. Fyfe, and J. F. Scinocca, 2010: Does the ocean impact the atmospheric response to stratospheric ozone depletion? Geophys. Res. Lett., 37, L12706, doi:10.1029/2010GL043773.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., M. C. Reader, J. C. Fyfe, and N. P. Gillett, 2011: Drivers of past and future Southern Ocean change: Stratospheric ozone versus greenhouse gas impacts. Geophys. Res. Lett., 38, L12601, doi:10.1029/2011GL047120.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., L. M. Polvani, and D. R. Marsh, 2012: Mitigation of 21st century Antarctic sea ice loss by stratospheric ozone recovery. Geophys. Res. Lett., 39, L20701, doi:10.1029/2012GL053325.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. M. Polvani, K. L. Smith, and R. Abernathy, 2015: The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM). Geophys. Res. Lett., 42, 55475555, doi:10.1002/2015GL064744.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, doi:10.1126/science.1155939.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Spence, P., J. C. Fyfe, A. Montenegro, and A. J. Weaver, 2010: Southern Ocean response to strengthening winds in an eddy-permitting global climate model. J. Climate, 23, 53325343, doi:10.1175/2010JCLI3098.1.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., A. R. Douglass, M. Gupta, P. A. Newman, S. Pawson, M. R. Schoeberl, and J. E. Nielsen, 2006: An ozone increase in the Antarctic summer stratosphere: A dynamical response to the ozone hole. Geophys. Res. Lett., 33, L21805, doi:10.1029/2006GL026820.

    • Search Google Scholar
    • Export Citation
  • Strahan, S. E., and Coauthors, 2011: Using transport diagnostics to understand chemistry climate model ozone simulations. J. Geophys. Res., 116, D17302, doi:10.1029/2010JD015360.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, doi:10.1029/2012GL052810.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett., 40, 43284332, doi:10.1002/grl.50820.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2012: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, doi:10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Bracegirdle, T. Phillips, G. Marshall, and J. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, doi:10.1175/JCLI-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., W. J. Randel, S. Pawson, P. A. Newman, and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27 19127 201, doi:10.1029/1999JD900795.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., L. Oman, P. A. Newman, R. S. Stolarski, S. Pawson, J. E. Nielsen, and J. Perlwitz, 2009: Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends. Geophys. Res. Lett., 36, L18701, doi:10.1029/2009GL040419.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., F. Primeau, T. DeVries, and M. Holzer, 2013: Recent changes in the ventilation of the southern oceans. Science, 339, 568570, doi:10.1126/science.1225411.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., 2006: Appendix A: Statistical issues regarding trends. Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences, T. Karl et al., Eds., U.S. Climate Change Science Program and the Subcommittee on Global Change Research, 129–139.

  • Zwally, H. J., J. C. Comiso, C. L. Parkinson, D. J. Cavalieri, and P. Gloersen, 2002: Variability of Antarctic sea ice 1979–1998. J. Geophys. Res., 107, 3041, doi:10.1029/2000JC000733.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 510 119 12
PDF Downloads 270 71 5