On Using a Clustering Approach for Global Climate Classification

Pawel Netzel Space Informatics Laboratory, Department of Geography, University of Cincinnati, Cincinnati, Ohio

Search for other papers by Pawel Netzel in
Current site
Google Scholar
PubMed
Close
and
Tomasz Stepinski Space Informatics Laboratory, Department of Geography, University of Cincinnati, Cincinnati, Ohio

Search for other papers by Tomasz Stepinski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Classifying the land surface into climate types provides means of diagnosing relations between Earth’s physical and biological systems and the climate. Global climate classifications are also used to visualize climate change. Clustering climate datasets provides a natural approach to climate classification, but the rule-based Köppen–Geiger classification (KGC) is the one most widely used. Here, a comprehensive approach to the clustering-based classification of climates is presented. Local climate is defined as a multivariate time series of mean monthly climatic variables and the authors propose to use dynamic time warping (DTW) as a measure of dissimilarity between local climates. Also discussed are the choice of climatic variables, the importance of their proper normalization, and the advantage of using distance-based clustering algorithms. Using the WorldClim global climate dataset and different combinations of clustering parameters, 32 different clustering-based classifications are calculated. These classifications are compared between themselves and to the KGC using the information-theoretic V measure. It is found that the best classifications are obtained using three climate variables (temperature, precipitation, and temperature range), a data normalization that takes into account the skewed distribution of precipitation values, and the partitioning around medoids clustering algorithm. Two such classifications are compared in detail between each other and to the KGC. About half of the climate types found by clustering can be matched to the familiar KGC classes, but the rest differ in their climatic character and spatial distribution. Finally, it is demonstrated that clustering-based classification results in climate types that are internally more homogeneous and externally more distinct than climate types in the KGC.

Corresponding author address: Tomasz Stepinski, Space Informatics Laboratory, Department of Geography, University of Cincinnati, 215 Braunstein Hall, Cincinnati, OH 45221. E-mail: stepintz@uc.edu

Abstract

Classifying the land surface into climate types provides means of diagnosing relations between Earth’s physical and biological systems and the climate. Global climate classifications are also used to visualize climate change. Clustering climate datasets provides a natural approach to climate classification, but the rule-based Köppen–Geiger classification (KGC) is the one most widely used. Here, a comprehensive approach to the clustering-based classification of climates is presented. Local climate is defined as a multivariate time series of mean monthly climatic variables and the authors propose to use dynamic time warping (DTW) as a measure of dissimilarity between local climates. Also discussed are the choice of climatic variables, the importance of their proper normalization, and the advantage of using distance-based clustering algorithms. Using the WorldClim global climate dataset and different combinations of clustering parameters, 32 different clustering-based classifications are calculated. These classifications are compared between themselves and to the KGC using the information-theoretic V measure. It is found that the best classifications are obtained using three climate variables (temperature, precipitation, and temperature range), a data normalization that takes into account the skewed distribution of precipitation values, and the partitioning around medoids clustering algorithm. Two such classifications are compared in detail between each other and to the KGC. About half of the climate types found by clustering can be matched to the familiar KGC classes, but the rest differ in their climatic character and spatial distribution. Finally, it is demonstrated that clustering-based classification results in climate types that are internally more homogeneous and externally more distinct than climate types in the KGC.

Corresponding author address: Tomasz Stepinski, Space Informatics Laboratory, Department of Geography, University of Cincinnati, 215 Braunstein Hall, Cincinnati, OH 45221. E-mail: stepintz@uc.edu
Save
  • Baker, B., H. Diaz, W. Hargrove, and F. Hoffman, 2010: Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Climatic Change, 98, 113131, doi:10.1007/s10584-009-9622-2.

    • Search Google Scholar
    • Export Citation
  • Beck, C., J. Grieser, M. Kottek, F. Rubel, and B. Rudolf, 2005: Characterizing global climate change by means of Köppen climate classification. Klimastatusbericht, 51, 139149.

    • Search Google Scholar
    • Export Citation
  • Berndt, D. J., and J. Clifford, 1994: Using dynamic time warping to find patterns in time series. Association for the Advancement of Artificial Intelligence Tech. Rep. WS-94-03, 12 pp.

  • Brugger, K., and F. Rubel, 2013: Characterizing the species composition of European Culicoides vectors by means of the Köppen-Geiger climate classification. Parasites Vectors, 6, 333, doi:10.1186/1756-3305-6-333.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., J. R. Miller, and A. T. DeGaetano, 1996: Definition of climate regions in the northern plains using an objective cluster modification technique. J. Climate, 9, 130146, doi:10.1175/1520-0442(1996)009<0130:DOCRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., 2012: Köppen versus the computer: Comparing Köppen-Geiger and multivariate regression tree climate classifications in terms of climate homogeneity. Hydrol. Earth Syst. Sci., 16, 217229, doi:10.5194/hess-16-217-2012.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and H. W. Chen, 2013: Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev., 6, 6979, doi:10.1016/j.envdev.2013.03.007.

    • Search Google Scholar
    • Export Citation
  • Davies, D. L., and D. W. Bouldin, 1979: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell., 1, 224227, doi:10.1109/TPAMI.1979.4766909.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 1996: Delineation of mesoscale climate zones in the northeastern United States using a novel approach to cluster analysis. J. Climate, 9, 17651782, doi:10.1175/1520-0442(1996)009<1765:DOMCZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and J. K. Eischeid, 2007: Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys. Res. Lett., 34, L18707, doi:10.1029/2007GL031253.

    • Search Google Scholar
    • Export Citation
  • Feng, S., Q. Hu, W. Huang, C.-H. Ho, R. Li, and Z. Tang, 2014: Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Global Planet. Change, 112, 4152, doi:10.1016/j.gloplacha.2013.11.002.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and M.-Y. C. Fovell, 1993: Climate zones of the conterminous United States defined using cluster analysis. J. Climate, 6, 21032135, doi:10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., F.-W. Gerstengarbe, and P. C. Werner, 2001: Climate shifts during the last century. Climatic Change, 50, 405417, doi:10.1023/A:1010699428863.

    • Search Google Scholar
    • Export Citation
  • Gallardo, C., V. Gil, E. Hagel, C. Tejeda, and M. de Castro, 2013: Assessment of climate change in Europe from an ensemble of regional climate models by the use of Köppen–Trewartha classification. Int. J. Climatol., 33, 21572166, doi:10.1002/joc.3580.

    • Search Google Scholar
    • Export Citation
  • Ganti, V., R. Ramakrishnan, J. Gehrke, A. Powell, and J. French, 1999: Clustering large datasets in arbitrary metric spaces. Proc. 15th Int. Conf. on Data Engineering, Sydney, NSW, Australia, Institute of Electrical and Electronics Engineers, 502511.

  • Garcia, R. A., M. Cabeza, C. Rahbek, and M. B. Araújo, 2014: Multiple dimensions of climate change and their implications for biodiversity. Science, 344, 1247579, doi:10.1126/science.1247579.

    • Search Google Scholar
    • Export Citation
  • Gerstengarbe, F.-W., P. C. Werner, and K. Fraedrich, 1999: Applying non-hierarchical cluster analysis algorithms to climate classification: Some problems and their solution. Theor. Appl. Climatol., 64, 143150, doi:10.1007/s007040050118.

    • Search Google Scholar
    • Export Citation
  • Guetter, P. J., and J. E. Kutzbach, 1990: A modified Köppen classification applied to model simulations of glacial and interglacial climates. Climatic Change, 16, 193215, doi:10.1007/BF00134657.

    • Search Google Scholar
    • Export Citation
  • Hanf, F., J. Körper, T. Spangehl, and U. Cubasch, 2012: Shifts of climate zones in multi-model climate change experiments using the Köppen climate classification. Meteor. Z., 21, 111123, doi:10.1127/0941-2948/2012/0344.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hijmans, R., 2004: WorldClim high resolution global climate surfaces, version 1.4 (release 3). The Knowledge Network for Biocomplexity, accessed 5 April 2015, doi:10.5063/AA/KNB.165.2.

  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 19651978, doi:10.1002/joc.1276.

    • Search Google Scholar
    • Export Citation
  • Kaufman, L., and P. J. Rousseeuw, 1987: Clustering by means of medoids. Statistical Data Analysis Based on the L1-Norm and Related Methods, Y. Dodge, Ed., North-Holland, 405–416.

  • Kaufman, L., and P. J. Rousseeuw, 2009: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, 342 pp.

  • Köppen, W., 1936: Das geographische System der Klimate. Handbuch der Klimatologie, W. Köppen and R. Geiger, Eds., Gebrder Borntraeger, 1–44.

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., J. S. Daniel, and S. Solomon, 2013: Pace of shifts in climate regions increases with global temperature. Nat. Climate Change, 3, 739743, doi:10.1038/nclimate1876.

    • Search Google Scholar
    • Export Citation
  • Metzger, M. J., R. G. H. Bunce, R. H. G. Jongman, R. Sayre, A. Trabucco, and R. Zomer, 2013: A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Global Ecol. Biogeogr., 22, 630638, doi:10.1111/geb.12022.

    • Search Google Scholar
    • Export Citation
  • Nafiz, A., 2005: Cyclic sequence comparison using dynamic warping. Image and Video Retrieval, W.-K. Leow et al., Eds., Lecture Notes in Computer Science, Vol. 3568, Springer, 328–335.

  • Peel, M. C., T. A. McMahon, B. L. Finlayson, and F. R. G. Watson, 2001: Identification and explanation of continental differences in the variability of annual runoff. J. Hydrol., 250, 224240, doi:10.1016/S0022-1694(01)00438-3.

    • Search Google Scholar
    • Export Citation
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, doi:10.5194/hess-11-1633-2007.

    • Search Google Scholar
    • Export Citation
  • Rabiner, L., and B. Juand, 1993: Fundamentals of Speech Recognition. Prentice-Hall, 507 pp.

  • Rohli, R. V., T. A. Joyner, S. J. Reynolds, and T. J. Ballinger, 2015: Overlap of global Köppen–Geiger climates, biomes, and soil orders. Phys. Geogr., 36, 158175, doi:10.1080/02723646.2015.1016384.

    • Search Google Scholar
    • Export Citation
  • Rosenberg, A., and J. Hirschberg, 2007: V-Measure: A conditional entropy-based external cluster evaluation measure. Proc. 2007 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, Czech Republic, Association for Computational Linguistics, 410420.

  • Rubel, F., and M. Kottek, 2010: Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteor. Z., 19, 135141, doi:10.1127/0941-2948/2010/0430.

    • Search Google Scholar
    • Export Citation
  • Spinoni, J., J. Vogt, G. Naumann, H. Carrao, and P. Barbosa, 2015: Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index. Int. J. Climatol., 35, 22102222, doi:10.1002/joc.4124.

    • Search Google Scholar
    • Export Citation
  • Stooksbury, D. E., and P. J. Michaels, 1991: Cluster analysis of southeastern U.S. climate stations. Theor. Appl. Climatol., 44, 143150, doi:10.1007/BF00868169.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1943: Problems in the classification of climates. Geogr. Rev., 33, 233255, doi:10.2307/209776.

  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, doi:10.2307/210739.

  • Trewartha, G. T., and L. H. Horn, 1980: An Introduction to Climate. McGraw-Hill, 416 pp.

  • Unal, Y., T. Kindap, and M. Karaca, 2003: Redefining the climate zones of Turkey using cluster analysis. Int. J. Climatol., 23, 10451055, doi:10.1002/joc.910.

    • Search Google Scholar
    • Export Citation
  • Usery, E. L., and J. Seong, 2001: All equal-area map projections are created equal, but some are more equal than others. Cartogr. Geogr. Inf. Sci., 28, 183193, doi:10.1559/152304001782153053.

    • Search Google Scholar
    • Export Citation
  • Ward, J. H., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244.

  • Werier, D. A., and R. F. C. Naczi, 2012: Carex secalina (Cyperaceae), an introduced sedge new to North America. Rhodora, 114, 349365, doi:10.3119/12-06.

    • Search Google Scholar
    • Export Citation
  • Wilkinson, L., and M. Friendly, 2009: The history of the cluster heat map. Amer. Stat., 63, 179184, doi:10.1198/tas.2009.0033.

  • Zhang, X., and X. Yan, 2014: Spatiotemporal change in geographical distribution of global climate types in the context of climate warming. Climate Dyn., 43, 595605, doi:10.1007/s00382-013-2019-y.

    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., M. D. Mahecha, and S. Harmeling, 2012: Climate classifications: The value of unsupervised clustering. Procedia Comput. Sci., 9, 897906, doi:10.1016/j.procs.2012.04.096.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2889 707 57
PDF Downloads 2459 582 40