• Adcroft, A., , C. Hill, , and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315, doi:10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aoki, S., , S. R. Rintoul, , S. Ushio, , S. Watanabe, , and N. L. Bindoff, 2005: Freshening of the Adélie Land Bottom Water near 140°E. Geophys. Res. Lett., 32, L23601, doi:10.1029/2005GL024246.

    • Search Google Scholar
    • Export Citation
  • Barber, D. G., , and R. A. Massom, 2007: The role of sea ice in Arctic and Antarctic polynyas. Polynyas: Windows to the World, W. O. Smith and D. G. Barber, Eds., Elsevier Oceanography Series, Vol. 74, Elsevier, 1–54, doi:10.1016/S0422-9894(06)74001-6.

  • Berthier, E., , B. Raup, , and T. Scambos, 2003: New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery. J. Glaciol., 49, 503511, doi:10.3189/172756503781830377.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., , G. D. Williams, , and I. Allison, 2001: Sea-ice growth and water-mass modification in the Mertz Glacier polynya, East Antarctica, during winter. Ann. Glaciol., 33, 399406, doi:10.3189/172756401781818185.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and et al. , 2009: World Ocean Database 2009. S. Levitus, Ed., NOAA Atlas NESDIS 66, 216 pp. [Available online at ftp://ftp.nodc.noaa.gov/pub/WOD09/DOC/wod09_intro.pdf.]

  • Campagne, P., and et al. , 2015: Glacial ice and atmospheric forcing on the Mertz Glacier polynya over the past 250 years. Nat. Commun., 6, 6642, doi:10.1038/ncomms7642.

    • Search Google Scholar
    • Export Citation
  • Cougnon, E. A., , B. K. Galton-Fenzi, , A. J. S. Meijers, , and B. Legrésy, 2013: Modeling interannual dense shelf water export in the region of the Mertz Glacier tongue (1992–2007). J. Geophys. Res., 118, 58585872, doi:10.1002/2013JC008790.

    • Search Google Scholar
    • Export Citation
  • Crosta, X., , D. Denis, , and O. Ther, 2008: Sea ice seasonality during the Holocene, Adélie Land, East Antarctica. Mar. Micropaleontol., 66, 222232, doi:10.1016/j.marmicro.2007.10.001.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Denis, D., , X. Crosta, , S. Zaragosi, , O. Romero, , B. Martin, , and V. Mas, 2006: Seasonal and subseasonal climate changes recorded in laminated diatom ooze sediments, Adélie Land, East Antarctica. Holocene, 16, 11371147, doi:10.1177/0959683606069414.

    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., , J. L. Bamber, , J. A. Griggs, , J. T. M. Lenaerts, , S. R. M. Ligtenberg, , M. R. van den Broeke, , and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, doi:10.1038/nature12567.

    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., , J. M. Klinck, , L.-S. Bai, , D. H. Bromwich, , K. M. Hines, , and D. M. Holland, 2015: The effect of atmospheric forcing resolution on delivery of ocean heat to the Antarctic floating ice shelves. J. Climate, 28, 60676085, doi:10.1175/JCLI-D-14-00374.1.

    • Search Google Scholar
    • Export Citation
  • Dragon, A.-C., , M.-N. Houssais, , C. Herbaut, , and J.-B. Charrassin, 2014: A note on the intraseasonal variability in an Antarctic polynia: Prior to and after the Mertz Glacier calving. J. Mar. Syst., 130, 4655, doi:10.1016/j.jmarsys.2013.06.006.

    • Search Google Scholar
    • Export Citation
  • Fraser, A. D., , R. A. Massom, , K. J. Michael, , B. K. Galton-Fenzi, , and J. L. Lieser, 2012: East Antarctic landfast sea ice distribution and variability, 2000–08. J. Climate, 25, 11371156, doi:10.1175/JCLI-D-10-05032.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , J. Willebrand, , T. J. McDougall, , and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giles, A. B., , R. A. Massom, , and V. I. Lytle, 2008: Fast-ice distribution in East Antarctica during 1997 and 1999 determined using RADARSAT data. J. Geophys. Res., 113, C02S14, doi:10.1029/2007JC004139.

    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., , and D. J. Olbers, 1989: A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci., 1, 325336, doi:10.1017/S0954102089000490.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, doi:10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., , and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. S., , A. Orr, , G. J. Marshall, , J. Turner, , and T. Phillips, 2013: The influence of the Amundsen–Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 66336648, doi:10.1175/JCLI-D-12-00813.1.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IOC, IHO, and BODC, 2003: GEBCO Digital Atlas. Centenary ed., Intergovernmental Oceanographic Commission, International Hydrographic Organization and British Oceanographic Data Centre, CD-ROM. [Available online at http://www.gebco.net/data_and_products/gebco_digital_atlas/.]

  • Jacobs, S. S., , and C. F. Giulivi, 2010: Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Climate, 23, 45084524, doi:10.1175/2010JCLI3284.1.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., , H. H. Hellmer, , C. S. M. Doake, , A. Jenkins, , and R. M. Frolich, 1992: Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38, 375387, doi:10.3198/1992JoG38-130-375-387.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., , P. A. Rochford, , and H. E. Hurlburt, 2000: Efficient and accurate bulk parameterizations of air–sea fluxes for use in general circulation models. J. Atmos. Oceanic Technol., 17, 14211438, doi:10.1175/1520-0426(2000)017<1421:EAABPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kern, S., 2009: Wintertime Antarctic coastal polynya area: 1992–2008. Geophys. Res. Lett., 36, L14501, doi:10.1029/2009GL038062.

  • Kusahara, K., , and H. Hasumi, 2013: Modeling Antarctic ice shelf responses to future climate changes and impacts on the ocean. J. Geophys. Res., 118, 24542475, doi:10.1002/jgrc.20166.

    • Search Google Scholar
    • Export Citation
  • Kusahara, K., , and H. Hasumi, 2014: Pathways of basal meltwater from Antarctic ice shelves: A model study. J. Geophys. Res., 119, 56905704, doi:10.1002/2014JC009915.

    • Search Google Scholar
    • Export Citation
  • Kusahara, K., , H. Hasumi, , and T. Tamura, 2010: Modeling sea ice production and dense shelf water formation in coastal polynyas around East Antarctica. J. Geophys. Res., 115, C10006, doi:10.1029/2010JC006133.

    • Search Google Scholar
    • Export Citation
  • Kusahara, K., , H. Hasumi, , and G. D. Williams, 2011a: Dense shelf water formation and brine-driven circulation in the Adélie and George V Land region. Ocean Modell., 37, 122138, doi:10.1016/j.ocemod.2011.01.008.

    • Search Google Scholar
    • Export Citation
  • Kusahara, K., , H. Hasumi, , and G. D. Williams, 2011b: Impact of the Mertz Glacier tongue calving on dense water formation and export. Nat. Commun., 2, 159, doi:10.1038/ncomms1156.

    • Search Google Scholar
    • Export Citation
  • Lacarra, M., , M.-N. Houssais, , E. Sultan, , S. R. Rintoul, , and C. Herbaut, 2011: Summer hydrography on the shelf off Terre Adélie/George V Land based on the ALBION and CEAMARC observations during the IPY. Polar Sci., 5, 88103, doi:10.1016/j.polar.2011.04.008.

    • Search Google Scholar
    • Export Citation
  • Lacarra, M., , M.-N. Houssais, , C. Herbaut, , E. Sultan, , and M. Beauverger, 2014: Dense shelf water production in the Adélie Depression, East Antarctica, 2004–2012: Impact of the Mertz Glacier calving. J. Geophys. Res., 119, 52035220, doi:10.1002/2013JC009124.

    • Search Google Scholar
    • Export Citation
  • Legrésy, B., , A. Wendt, , I. Tabacco, , F. Rémy, , and R. Dietrich, 2004: Influence of tides and tidal current on Mertz Glacier, Antarctica. J. Glaciol., 50, 427435, doi:10.3189/172756504781829828.

    • Search Google Scholar
    • Export Citation
  • Legrésy, B., and et al. , 2010: CRAC!!! in the Mertz Glacier, Antarctica. Antarctic Climate and Ecosystems Cooperative Research Centre Rep., 10 pp. [Available online at http://www.antarctica.gov.au/__data/assets/pdf_file/0004/22549/ml_402353967939815_mertz_final_100226.pdf.]

  • Lemieux, J.-F., , L. B. Tremblay, , F. Dupont, , M. Plante, , G. C. Smith, , and D. Dumont, 2015: A basal stress parameterization for modeling landfast ice. J. Geophys. Res., 120, 31573173, doi:10.1002/2014JC010678.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., , M. K. MacVean, , and A. P. Lock, 1993: Positivity-preserving numerical schemes for multidimensional advection. NASA Tech. Memo. 106055, 62 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930017902.pdf.]

  • Levitus, S., and et al. , 2013: World Ocean Database 1998, version 2. NOAA/NODC. [Available online at http://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0098461.]

  • Marsland, S. J., , N. L. Bindoff, , G. D. Williams, , and W. F. Budd, 2004: Modeling water mass formation in the Mertz Glacier polynya and Adélie Depression, East Antarctica. J. Geophys. Res., 109, C11003, doi:10.1029/2004JC002441.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., , J. A. Church, , N. L. Bindoff, , and G. D. Williams, 2007: Antarctic coastal polynya response to climate change. J. Geophys. Res., 112, C07009, doi:10.1029/2005JC003291.

    • Search Google Scholar
    • Export Citation
  • Massom, R. A., 2003: Recent iceberg calving events in the Ninnis Glacier region, East Antarctica. Antarct. Sci., 15, 303313, doi:10.1017/S0954102003001299.

    • Search Google Scholar
    • Export Citation
  • Massom, R. A., , P. T. Harris, , K. J. Michael, , and M. J. Potter, 1998: The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol., 27, 420426, doi:10.3198/1998AoG27-1-420-426.

    • Search Google Scholar
    • Export Citation
  • Massom, R. A., , A. B. Giles, , H. A. Fricker, , R. C. Warner, , B. Legrésy, , G. Hyland, , N. Young, , and A. D. Fraser, 2010: Examining the interaction between multi-year landfast sea ice and the Mertz Glacier tongue, East Antarctica: Another factor in ice sheet stability? J. Geophys. Res., 115, C12027, doi:10.1029/2009JC006083.

    • Search Google Scholar
    • Export Citation
  • Mayet, C., , L. Testut, , B. Legrésy, , L. Lescarmontier, , and F. Lyard, 2013: High-resolution barotropic modeling and the calving of the Mertz Glacier, East Antarctica. J. Geophys. Res., 118, 52675279, doi:10.1002/jgrc.20339.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and L. Kantha, 1989: An ice–ocean coupled model. J. Geophys. Res., 94, 10 93710 954, doi:10.1029/JC094iC08p10937.

  • Nihashi, S., , and K. I. Ohshima, 2015: Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. J. Climate, 28, 36503670, doi:10.1175/JCLI-D-14-00369.1.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., , and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634, doi:10.1029/1999JC900068.

    • Search Google Scholar
    • Export Citation
  • Presti, M., , L. Barbara, , D. Denis, , S. Schmidt, , L. De Santis, , and X. Crosta, 2011: Sediment delivery and depositional patterns off Adélie Land (East Antarctica) in relation to late Quaternary climatic cycles. Mar. Geol., 284, 96113, doi:10.1016/j.margeo.2011.03.012.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., 2002: Mass balance of East Antarctic glaciers and ice shelves from satellite data. Ann. Glaciol., 34, 217227, doi:10.3189/172756402781817419.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , J. L. Bamber, , M. R. van den Broeke, , C. Davis, , Y. Li, , W. J. van de Berg, , and E. van Meijgaard, 2008: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci., 1, 106110, doi:10.1038/ngeo102.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., , S. Jacobs, , J. Mouginot, , and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, doi:10.1126/science.1235798.

    • Search Google Scholar
    • Export Citation
  • Schodlok, M. P., , D. Menemenlis, , and E. J. Rignot, 2016: Ice shelf basal melt rates around Antarctica from simulations and observations. J. Geophys. Res., 121, 10851109, doi:10.1002/2015JC011117.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, doi:10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shadwick, E. H., and et al. , 2013: Glacier tongue calving reduced dense water formation and enhanced carbon uptake. Geophys. Res. Lett., 40, 904909, doi:10.1002/grl.50178.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., , S. Aoki, , K. I. Ohshima, , and S. R. Rintoul, 2012: Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian–Antarctic Basin. Ocean Sci., 8, 419432, doi:10.5194/os-8-419-2012.

    • Search Google Scholar
    • Export Citation
  • Tamura, T., , K. I. Ohshima, , and S. Nihashi, 2008: Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35, L07606, doi:10.1029/2007GL032903.

    • Search Google Scholar
    • Export Citation
  • Tamura, T., , G. D. Williams, , A. D. Fraser, , and K. I. Ohshima, 2012: Potential regime shift in decreased sea ice production after the Mertz Glacier calving. Nat. Commun., 3, 826, doi:10.1038/ncomms1820.

    • Search Google Scholar
    • Export Citation
  • Tamura, T., , K. I. Ohshima, , A. D. Fraser, , and G. D. Williams, 2016: Sea ice production variability in Antarctic coastal polynyas. J. Geophys. Res. Oceans, 121, 29672979, doi:10.1002/2015JC011537.

    • Search Google Scholar
    • Export Citation
  • Tang, S., , D. Qin, , J. Ren, , J. Kang, , and Z. Li, 2007: Structure, salinity and isotopic composition of multi-year landfast sea ice in Nella Fjord, Antarctica. Cold Reg. Sci. Technol., 49, 170177, doi:10.1016/j.coldregions.2007.03.005.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and et al. , 2010: A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst. Sci. Data, 2, 261273, doi:10.5194/essdd-3-231-2010.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., , S. Danilov, , and J. Schröter, 2008: Comparison of overflow simulations on different vertical grids using the finite element ocean circulation model. Ocean Modell., 20, 313335, doi:10.1016/j.ocemod.2007.10.005.

    • Search Google Scholar
    • Export Citation
  • Williams, G. D., , and N. L. Bindoff, 2003: Wintertime oceanography of the Adélie Depression. Deep-Sea Res. II, 50, 13731392, doi:10.1016/S0967-0645(03)00074-2.

    • Search Google Scholar
    • Export Citation
  • Williams, G. D., , N. L. Bindoff, , S. J. Marsland, , and S. R. Rintoul, 2008: Formation and export of dense shelf water from the Adélie Depression, East Antarctica. J. Geophys. Res., 113, C04039, doi:10.1029/2007JC004346.

    • Search Google Scholar
    • Export Citation
  • Williams, G. D., , S. Aoki, , S. S. Jacobs, , S. R. Rintoul, , T. Tamura, , and N. L. Bindoff, 2010: Antarctic Bottom Water from the Adélie and George V Land coast, East Antarctica (140–149°E). J. Geophys. Res., 115, C04027, doi:10.1029/2009JC005812.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 8
PDF Downloads 59 59 4

Modeling Ocean–Cryosphere Interactions off Adélie and George V Land, East Antarctica

View More View Less
  • 1 Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
  • | 2 Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
  • | 3 Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
  • | 4 Tokyo University of Marine Science and Technology, Tokyo, Japan
  • | 5 Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
  • | 6 Australian Antarctic Division, Kingston, Tasmania, Australia
  • | 7 National Institute of Polar Research, Tachikawa, Tokyo, Japan
  • | 8 Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

Ocean–cryosphere interactions along the Adélie and George V Land (AGVL) coast are investigated using a coupled ocean–sea ice–ice shelf model. The dominant feature of the Mertz Glacier Tongue (MGT), located at approximately 145°E, was a highly productive winter coastal polynya system, until its calving in February 2010 dramatically changed the regional “icescape.” This study examines the annual mean, seasonal, and interannual variabilities of sea ice production; basal melting of the MGT; ice shelves, large icebergs, and fast ice; Dense Shelf Water (DSW) export; and bottom water properties on the continental slope and rise, and assesses the impacts of the calving event. The interannual variability of the winter coastal polynya regime is dominated by the regional offshore winds and air temperature, which are linked to activity of the Amundsen Sea low pressure system. This is the main driver of the interannual variability of DSW exported from the AGVL region. The calving event led to a decrease in sea ice production that resulted in a decrease in the density of DSW export. Subsequently, there is extensive freshening downstream over the continental shelf and slope regions. In addition, it is found that the calving event causes a significant decrease in the mean melt rate of the MGT, resulting from a decrease in ocean heat flux into the cavity due to ocean circulation changes.

Corresponding author address: Kazuya Kusahara, Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart TAS 7001, Australia. E-mail: kazuya.kusahara@gmail.com

Abstract

Ocean–cryosphere interactions along the Adélie and George V Land (AGVL) coast are investigated using a coupled ocean–sea ice–ice shelf model. The dominant feature of the Mertz Glacier Tongue (MGT), located at approximately 145°E, was a highly productive winter coastal polynya system, until its calving in February 2010 dramatically changed the regional “icescape.” This study examines the annual mean, seasonal, and interannual variabilities of sea ice production; basal melting of the MGT; ice shelves, large icebergs, and fast ice; Dense Shelf Water (DSW) export; and bottom water properties on the continental slope and rise, and assesses the impacts of the calving event. The interannual variability of the winter coastal polynya regime is dominated by the regional offshore winds and air temperature, which are linked to activity of the Amundsen Sea low pressure system. This is the main driver of the interannual variability of DSW exported from the AGVL region. The calving event led to a decrease in sea ice production that resulted in a decrease in the density of DSW export. Subsequently, there is extensive freshening downstream over the continental shelf and slope regions. In addition, it is found that the calving event causes a significant decrease in the mean melt rate of the MGT, resulting from a decrease in ocean heat flux into the cavity due to ocean circulation changes.

Corresponding author address: Kazuya Kusahara, Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Private Bag 80, Hobart TAS 7001, Australia. E-mail: kazuya.kusahara@gmail.com
Save