• Archambault, H. M., , L. F. Bosart, , D. Keyser, , and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P. J., , J. M. Wallace, , and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, doi:10.1175/2009JAS3270.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , and K. M. W. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108, 298312, doi:10.1175/1520-0493(1980)108<0298:NCSANE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P., , A. J. Nash, , and F. Porter, 1993: Diagnostic studies of two contrasting rainfall episodes in Hawaii: Dry 1981 and wet 1982. J. Climate, 6, 14571462, doi:10.1175/1520-0442(1993)006<1457:DSOTCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., , and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495163, doi:10.1175/JCLI4279.1.

    • Search Google Scholar
    • Export Citation
  • Franzke, C. S., , S. B. Feldstein, , and S. Lee, 2011: Synoptic analysis of the Pacific–North America teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, doi:10.1002/qj.768.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Handlos, Z. J., , and J. E. Martin, 2016: Composite analysis of large-scale environments conducive to western Pacific polar/subtropical jet superposition. J. Climate, 29, 71457165, doi:10.1175/JCLI-D-16-0044.1.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2004: A primer for EOF analysis of climate data. University of Reading, 33 pp. [Available online at http://www.met.reading.ac.uk/~han/Monitor/eofprimer.pdf.]

  • Higgins, R. W., , J.-K. E. Schemm, , W. Shi, , and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, doi:10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaffe, S. C., , J. E. Martin, , D. J. Vimont, , and D. J. Lorenz, 2011: A synoptic climatology of episodic, subseasonal retractions of the Pacific jet. J. Climate, 24, 28462860, doi:10.1175/2010JCLI3995.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923, doi:10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koteswaram, P., 1953: An analysis of the high tropospheric wind circulation over India in winter. Indian J. Meteor. Geophys., 4, 1321.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., 2003: Ooishi’s observation: Viewed in the context of jet stream discovery. Bull. Amer. Meteor. Soc., 84, 357369, doi:10.1175/BAMS-84-3-357.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., , and S. Nigam, 2008: The North Pacific Oscillation–west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, doi:10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Loewe, F., , and U. Radok, 1950: A meridional aerological cross section in the southwest Pacific. J. Meteor., 7, 5865, doi:10.1175/1520-0469(1950)007<0058:AMACSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martius, O., , C. Schwierz, , and H. C. Davies, 2010: Tropopause-level waveguides. J. Atmos. Sci., 67, 866879, doi:10.1175/2009JAS2995.1.

    • Search Google Scholar
    • Export Citation
  • Mohri, K., 1953: On the fields of wind and temperature over Japan and adjacent waters during winter of 1950–1951. Tellus, 5A, 340358, doi:10.1111/j.2153-3490.1953.tb01066.x.

    • Search Google Scholar
    • Export Citation
  • Namias, J., , and P. F. Clapp, 1949: Confluence theory of the high tropospheric jet stream. J. Meteor., 6, 330336, doi:10.1175/1520-0469(1949)006<0330:CTOTHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NCAR, 2015: Command Language Version 6.3.0. UCAR/NCAR/CISL/TDD, doi:10.5065/D6WD3XH5.

  • Newton, C. W., 1954: Frontogenesis and frontolysis as a three-dimensional process. J. Meteor., 11, 449461, doi:10.1175/1520-0469(1954)011<0449:FAFAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., , and J. E. Martin, 2004: The large-scale modulation of subtropical cyclogenesis in the central and eastern Pacific Ocean. Mon. Wea. Rev., 132, 18131828, doi:10.1175/1520-0493(2004)132<1813:TLMOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmén, E., 1951: The role of atmospheric disturbances in the general circulation. Quart. J. Roy. Meteor. Soc., 77, 337354, doi:10.1002/qj.49707733302.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., , and S. C. Jones, 2010: The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617637, doi:10.1002/qj.605.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , and C. J. Schreck III, 2009: A combined wave-number–frequency and time-extended EOF approach for tracking the progress of modes of large-scale organized tropical convection. Quart. J. Roy. Meteor. Soc., 135, 161173, doi:10.1002/qj.356.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., , and C. Park, 1991: Low-frequency intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 48, 629650, doi:10.1175/1520-0469(1991)048<0629:LFITEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., 1982: The forcing of stationary wave motion by tropical diabatic heating. Quart. J. Roy. Meteor. Soc., 108, 503534, doi:10.1002/qj.49710845703.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., , and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev., 110, 481485, doi:10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Yeh, T., 1950: The circulation of the high troposphere over China in the winter of 1945–46. Tellus, 2A, 173183, doi:10.1111/j.2153-3490.1950.tb00329.x.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 2
PDF Downloads 41 41 3

Synoptic Features Associated with Temporally Coherent Modes of Variability of the North Pacific Jet Stream

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

Time-extended EOF (TE-EOF) analysis is employed to examine the synoptic-scale evolution of the two leading modes of the North Pacific jet stream variability, namely, its zonal extension–retraction (TE-EOF 1) and the north–south shift of its exit region (TE-EOF 2). Use of the TE-EOF analysis enables a temporally coherent examination of the synoptic-scale evolution preceding and following peaks in each of the two leading modes that provides insight into the preferred evolutions of the North Pacific jet.

Composite analyses are constructed based upon selecting peaks in the principal component time series of both phases of each TE-EOF whose magnitude exceeded 1.5 standard deviations. Jet extension events are associated with an anomalous cyclonic circulation over the Gulf of Alaska that induces a low-level warm anomaly over western North America. Jet retractions are associated with a nearly opposite configuration characterized by an anomalous anticyclonic circulation over the Aleutians and anomalous low-level cold anomaly over western North America. Similar but lower-amplitude upper-level patterns are noted in the composites of the corresponding poleward-/equatorward-shifted jet phases, with the poleward shift of the jet exit region tied to anomalously low geopotential heights over Alaska and anomalous low-level warmth over north-central North America. An equatorward shift of the exit region is tied to positive height anomalies over Alaska with downstream cold anomalies occurring in western North America. The more extreme downstream impacts that characterize TE-EOF 2 are also longer lasting (>5 days), suggesting potential utility in medium-range forecasts.

Corresponding author address: J. E. Martin, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton Street, Madison, WI 53706. E-mail: jemarti1@wisc.edu

Abstract

Time-extended EOF (TE-EOF) analysis is employed to examine the synoptic-scale evolution of the two leading modes of the North Pacific jet stream variability, namely, its zonal extension–retraction (TE-EOF 1) and the north–south shift of its exit region (TE-EOF 2). Use of the TE-EOF analysis enables a temporally coherent examination of the synoptic-scale evolution preceding and following peaks in each of the two leading modes that provides insight into the preferred evolutions of the North Pacific jet.

Composite analyses are constructed based upon selecting peaks in the principal component time series of both phases of each TE-EOF whose magnitude exceeded 1.5 standard deviations. Jet extension events are associated with an anomalous cyclonic circulation over the Gulf of Alaska that induces a low-level warm anomaly over western North America. Jet retractions are associated with a nearly opposite configuration characterized by an anomalous anticyclonic circulation over the Aleutians and anomalous low-level cold anomaly over western North America. Similar but lower-amplitude upper-level patterns are noted in the composites of the corresponding poleward-/equatorward-shifted jet phases, with the poleward shift of the jet exit region tied to anomalously low geopotential heights over Alaska and anomalous low-level warmth over north-central North America. An equatorward shift of the exit region is tied to positive height anomalies over Alaska with downstream cold anomalies occurring in western North America. The more extreme downstream impacts that characterize TE-EOF 2 are also longer lasting (>5 days), suggesting potential utility in medium-range forecasts.

Corresponding author address: J. E. Martin, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton Street, Madison, WI 53706. E-mail: jemarti1@wisc.edu
Save