• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Agrawal, S., , G. Atluri, , S. Liess, , S. Chatterjee, , and V. Kumar, 2015: Tripoles: A new class of climate teleconnections. University of Minnesota Department of Computer Science and Engineering Tech. Rep. TR 15-020, 22 pp. [Available online at https://www.cs.umn.edu/sites/cs.umn.edu/files/tech_reports/15-020.pdf.]

  • Allan, R., , and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, doi:10.1175/JCLI3937.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1987: On the interpretation of the Eliassen-Palm flux divergence. Quart. J. Roy. Meteor. Soc., 113, 323338, doi:10.1002/qj.49711347518.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , F. W. Taylor, , and M. E. McIntyre, 1987: The influence of atmospheric waves on the general circulation of the middle atmosphere. Philos. Trans. Roy. Soc. London, 323A, 693705, doi:10.1098/rsta.1987.0115.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J., 2006: EP fluxes. NOAA/ESRL Physical Sciences Division. [Available online at http://www.esrl.noaa.gov/psd/data/epflux/.]

  • Benjamini, Y., , and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., 57B, 289300. [Available online at http://www.jstor.org/stable/2346101.]

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., , and D. Yekutieli, 2001: The control of the false discovery rate in multiple testing under dependency. Ann. Stat., 29, 11651188, doi:10.1214/aos/1013699998.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., , E. Xoplaki, , C. Casty, , A. Pauling, , and J. Luterbacher, 2007: ENSO influence on Europe during the last centuries. Climate Dyn., 28, 181197, doi:10.1007/s00382-006-0175-z.

    • Search Google Scholar
    • Export Citation
  • Chhak, K. C., , E. Di Lorenzo, , N. Schneider, , and P. F. Cummins, 2009: Forcing of low-frequency ocean variability in the northeast Pacific. J. Climate, 22, 12551276, doi:10.1175/2008JCLI2639.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , M. Barlow, , and K. Saito, 2009: Decadal fluctuations in planetary wave forcing modulate global warming in late boreal winter. J. Climate, 22, 44184426, doi:10.1175/2009JCLI2931.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , J. C. Furtado, , J. Jones, , M. Barlow, , D. Whittleston, , and D. Entekhabi, 2014: Linking Siberian snow cover to precursors of stratospheric variability. J. Climate, 27, 54225432, doi:10.1175/JCLI-D-13-00779.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , S.-P. Xie, , and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., , D. R. Cayan, , G. J. McCabe, , and J. A. Marengo, 2000: Multiscale streamflow variability associated with El Niño/Southern Oscillation. El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 113146.

  • Di Lorenzo, E., , K. M. Cobb, , J. C. Furtado, , N. Schneider, , B. T. Anderson, , A. Bracco, , M. A. Alexander, , and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci., 3, 762765, doi:10.1038/ngeo984.

    • Search Google Scholar
    • Export Citation
  • Dima, M., , and G. Lohmann, 2007: A hemispheric mechanism for the Atlantic multidecadal oscillation. J. Climate, 20, 27062719, doi:10.1175/JCLI4174.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, doi:10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., , L. Sun, , and G. Chen, 2013: The role of synoptic eddies in the tropospheric response to stratospheric variability. Geophys. Res. Lett., 40, 49334937, doi:10.1002/grl.50943.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., , and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, doi:10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., , B. J. Hoskins, , and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, K., , F. Chen, , A. K. Sen, , N. Davi, , W. Huang, , J. Li, , and H. Seppä, 2014: Hydroclimate variations in central and monsoonal Asia over the past 700 years. PLoS One, 9, e102751, doi:10.1371/journal.pone.0102751.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , S. Hu, , M. Lengaigne, , and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 13811401, doi:10.1007/s00382-014-2126-4.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, doi:10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Foster, J. L., , J. Cohen, , D. A. Robinson, , and T. W. Estilow, 2013: A look at the date of snowmelt and correlations with the Arctic Oscillation. Ann. Glaciol., 54, 196204, doi:10.3189/2013AoG62A090.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., , S. B. Feldstein, , and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, doi:10.1002/qj.768.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., , and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152725, doi:10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., , and P. A. Stott, 2009: Attribution of anthropogenic influence on seasonal sea level pressure. Geophys. Res. Lett., 36, L23709, doi:10.1029/2009GL041269.

  • Gollan, G., , R. J. Greatbatch, , and T. Jung, 2012: Tropical impact on the East Asian winter monsoon. Geophys. Res. Lett., 39, L17801, doi:10.1029/2012GL052978.

    • Search Google Scholar
    • Export Citation
  • Gonsamo, A., , J. M. Chen, , and P. D’Odorico, 2015: Underestimated role of east Atlantic–west Russia pattern on Amazon vegetation productivity. Proc. Natl. Acad. Sci. USA, 112, E1054E1055, doi:10.1073/pnas.1420834112.

    • Search Google Scholar
    • Export Citation
  • Gouirand, I., , and V. Moron, 2003: Variability of the impact of El Niño–Southern Oscillation on sea-level pressure anomalies over the North Atlantic in January to March (1874–1996). Int. J. Climatol., 23, 15491566, doi:10.1002/joc.963.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., , and D. Zanchettin, 2012: Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res., 117, D01102, doi:10.1029/2011JD016493.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 2000: The North Atlantic Oscillation. Stochastic Environ. Res. Risk Assess., 14, 213242, doi:10.1007/s004770000047.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and S. Feng, 2012: AMO- and ENSO-driven summertime circulation and precipitation variations in North America. J. Climate, 25, 64776495, doi:10.1175/JCLI-D-11-00520.1.

    • Search Google Scholar
    • Export Citation
  • Jia, L.-H., , H.-Y. Li, , R.-Q. Li, , H. Tang, , and W. Huo, 2012: Numerical simulation and diagnosis analysis of “3.12” sandstorm in south Xinjiang. J. Desert Res., 32, 1135–1141. [Available online at http://zgsm.westgis.ac.cn/EN/abstract/abstract2258.shtml.]

  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kawale, J., , M. Steinbach, , and V. Kumar, 2011: Discovering dynamic dipoles in climate data. Proc. 2011 SIAM Int. Conf. on Data Mining, Philadelphia, PA, Society for Industrial and Applied Mathematics, 107–118, doi:10.1137/1.9781611972818.10.

  • Kawale, J., and et al. , 2013: A graph-based approach to find teleconnections in climate data. Stat. Anal. Data Min., 6, 158179, doi:10.1002/sam.11181.

    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., , and V. B. Capistrano, 2014: How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. Int. J. Climatol., 34, 162178, doi:10.1002/joc.3674.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, doi:10.1126/science.1174062.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , and P. Alpert, 2005: Decadal trends in the east Atlantic–west Russia pattern and Mediterranean precipitation. Int. J. Climatol., 25, 183192, doi:10.1002/joc.1124.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , H. Wang, , W. Wang, , Y. Xue, , and Z.-Z. Hu, 2013: Does knowing the oceanic PDO phase help predict the atmospheric anomalies in subsequent months? J. Climate, 26, 12681285, doi:10.1175/JCLI-D-12-00057.1.

    • Search Google Scholar
    • Export Citation
  • Kunz, T., , and R. J. Greatbatch, 2013: On the northern annular mode surface signal associated with stratospheric variability. J. Atmos. Sci., 70, 21032118, doi:10.1175/JAS-D-12-0158.1.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

  • Li, Y.-P., , G. Dele, , Q. Si, , and X.-H. Wu, 2013: A synoptic analysis on forecasting of sand-dust storm in November over Inner Mongolia. J. Desert Res., 33, 14831491. [Available online at http://zgsm.westgis.ac.cn/EN/abstract/abstract2550.shtml.]

    • Search Google Scholar
    • Export Citation
  • Liao, Q.-H., , S.-Y. Tao, , and H.-J. Wang, 2004: Interannual variation of summer subtropical westerly jet in East Asia and its impacts on the climate anomalies of East Asia summer monsoon. Chin. J. Geophys., 47, 1221, doi:10.1002/cjg2.449.

    • Search Google Scholar
    • Export Citation
  • Liess, S., and et al. , 2014: Different modes of variability over the Tasman Sea: Implications for regional climate. J. Climate, 27, 84668486, doi:10.1175/JCLI-D-13-00713.1.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, doi:10.1029/1999GL010478.

    • Search Google Scholar
    • Export Citation
  • Marullo, S., , V. Artale, , and R. Santoleri, 2011: The SST multidecadal variability in the Atlantic–Mediterranean region and its relation to AMO. J. Climate, 24, 43854401, doi:10.1175/2011JCLI3884.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , and P. D. Sardeshmukh, 1995: A caveat concerning singular value decomposition. J. Climate, 8, 352360, doi:10.1175/1520-0442(1995)008<0352:ACCSVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D., Jr., , and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24, 469491, doi:10.1029/RG024i003p00469.

    • Search Google Scholar
    • Export Citation
  • Park, J., , and G. Dusek, 2013: ENSO components of the Atlantic multidecadal oscillation and their relation to North Atlantic interannual coastal sea level anomalies. Ocean Sci., 9, 535543, doi:10.5194/os-9-535-2013.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., , and R. C. Pacanowski, 1981: Response of equatorial oceans to periodic forcing. J. Geophys. Res., 86, 19031916, doi:10.1029/JC086iC03p01903.

    • Search Google Scholar
    • Export Citation
  • Power, S., , T. Casey, , C. Folland, , A. Colman, , and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Ren, X., , X. Yang, , and C. Chu, 2010: Seasonal variations of the synoptic-scale transient eddy activity and polar front jet over East Asia. J. Climate, 23, 32223233, doi:10.1175/2009JCLI3225.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneidereit, A., , S. Schubert, , P. Vargin, , F. Lunkeit, , X. Zhu, , D. H. W. Peters, , and K. Fraedrich, 2012: Large-scale flow and the long-lasting blocking high over Russia: Summer 2010. Mon. Wea. Rev., 140, 29672981, doi:10.1175/MWR-D-11-00249.1.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F., and et al. , 2015: Decadal variability of the East African monsoon. CLIVAR Exchanges, No. 66, International CLIVAR Project Office, Southampton, United Kingdom, 15–19. [Available online at http://www.clivar.org/sites/default/files/documents/CLIVAR_Exchanges_No_66_Final_with_bleed_23_June_15.pdf.]

  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol., 56, 1828, doi:10.3189/2015AoG69A909.

    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., , and J. M. Wallace, 2015: On the leading patterns of Northern Hemisphere sea level pressure variability. J. Atmos. Sci., 72, 3469–3486, doi:10.1175/JAS-D-14-0371.1.

    • Search Google Scholar
    • Export Citation
  • Snedecor, G. W., , and W. G. Cochran, 1989: Statistical Methods. 8th ed. Iowa State University Press, 503 pp.

  • Tang, B. H., , and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Teegavarapu, R. S. V., , A. Goly, , and J. Obeysekera, 2013: Influences of Atlantic multidecadal oscillation phases on spatial and temporal variability of regional precipitation extremes. J. Hydrol., 495, 7493, doi:10.1016/j.jhydrol.2013.05.003.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1981: Seasonal variations in global sea level pressure and the total mass of the atmosphere. J. Geophys. Res., 86, 52385246, doi:10.1029/JC086iC06p05238.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, doi:10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verdon, D. C., , and S. W. Franks, 2006: Long-term behaviour of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys. Res. Lett., 33, L06712, doi:10.1029/2005GL025052.

  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , W. Chen, , and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, doi:10.1029/2008GL035287.

  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant gridpoints”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00267.1, in press.

    • Search Google Scholar
    • Export Citation
  • Xie, R., , F. Huang, , F.-F. Jin, , and J. Huang, 2015: The impact of basic state on quasi-biennial periodicity of central Pacific ENSO over the past decade. Theor. Appl. Climatol., 120, 5567, doi:10.1007/s00704-014-1150-y.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , K.-M. Lau, , and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306325, doi:10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and S. T. Kim, 2013: Identifying the types of major El Niño events since 1870. Int. J. Climatol., 33, 21052112, doi:10.1002/joc.3575.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., , O. Bothe, , W. Müller, , J. Bader, , and J. H. Jungclaus, 2014: Different flavors of the Atlantic multidecadal variability. Climate Dyn., 42, 381399, doi:10.1007/s00382-013-1669-0.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. M. Wallace, , and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 20
PDF Downloads 130 130 13

A Teleconnection between the West Siberian Plain and the ENSO Region

View More View Less
  • 1 Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota
  • | 2 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
  • | 3 Department of Statistics, University of Minnesota, Minneapolis, Minnesota
  • | 4 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
© Get Permissions
Restricted access

Abstract

The Walker circulation is linked to extratropical waves that are deflected from the Northern Hemisphere polar regions and travel southeastward over central Asia toward the western Pacific warm pool during northern winter. The wave pattern resembles the east Atlantic–west Russia pattern and influences the El Niño–Southern Oscillation (ENSO) region. A tripole pattern between the West Siberian Plain and the two centers of action of ENSO indicates that the background state of ENSO with respect to global sea level pressure (SLP) has a significant negative correlation to the West Siberian Plain. The correlation with the background state, which is defined by the sum of the two centers of action of ENSO, is higher than each of the pairwise correlations with either of the ENSO centers alone. The centers are defined with a clustering algorithm that detects regions with similar characteristics. The normalized monthly SLP time series for the two centers of ENSO (around Darwin, Australia, and Tahiti) are area averaged, and the sum of both regions is considered as the background state of ENSO. This wave train can be detected throughout the troposphere and the lower stratosphere. Its origins can be traced back to Rossby wave activity triggered by convection over the subtropical North Atlantic that emanates wave activity toward the West Siberian Plain. The same wave train also propagates to the central Pacific Ocean around Tahiti and can be used to predict the background state over the ENSO region. This background state also modifies the subtropical bridge between tropical eastern Pacific and subtropical North Atlantic leading to a circumglobal wave train.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0884.s1.

Corresponding author address: Stefan Liess, Department of Earth Sciences, University of Minnesota, 310 Pillsbury Dr., Minneapolis, MN 55455. E-mail: liess@umn.edu

Abstract

The Walker circulation is linked to extratropical waves that are deflected from the Northern Hemisphere polar regions and travel southeastward over central Asia toward the western Pacific warm pool during northern winter. The wave pattern resembles the east Atlantic–west Russia pattern and influences the El Niño–Southern Oscillation (ENSO) region. A tripole pattern between the West Siberian Plain and the two centers of action of ENSO indicates that the background state of ENSO with respect to global sea level pressure (SLP) has a significant negative correlation to the West Siberian Plain. The correlation with the background state, which is defined by the sum of the two centers of action of ENSO, is higher than each of the pairwise correlations with either of the ENSO centers alone. The centers are defined with a clustering algorithm that detects regions with similar characteristics. The normalized monthly SLP time series for the two centers of ENSO (around Darwin, Australia, and Tahiti) are area averaged, and the sum of both regions is considered as the background state of ENSO. This wave train can be detected throughout the troposphere and the lower stratosphere. Its origins can be traced back to Rossby wave activity triggered by convection over the subtropical North Atlantic that emanates wave activity toward the West Siberian Plain. The same wave train also propagates to the central Pacific Ocean around Tahiti and can be used to predict the background state over the ENSO region. This background state also modifies the subtropical bridge between tropical eastern Pacific and subtropical North Atlantic leading to a circumglobal wave train.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0884.s1.

Corresponding author address: Stefan Liess, Department of Earth Sciences, University of Minnesota, 310 Pillsbury Dr., Minneapolis, MN 55455. E-mail: liess@umn.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.22 MB)
Save