• Chang, E. K. M., , Y. Guo, , and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 2005: The latitude of the subtropical ridge over eastern Australia: The L index revisited. Int. J. Climatol., 25, 12911299, doi:10.1002/joc.1196.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter09_FINAL.pdf.]

  • Frederiksen, C. S., , S. L. Osbrough, , J. S. Frederiksen, , and J. M. Sisson, 2011: Changes and projections in Australian winter rainfall and circulation: Anthropogenic forcing and internal variability. Int. J. Climate Change, 2, 143162, doi:10.18848/1835-7156/CGP/v02i03/37071.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., , and P. J. Webster, 1988: Alternative theories of atmospheric teleconnections and low-frequency fluctuations. Rev. Geophys., 26, 459494, doi:10.1029/RG026i003p00459.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., , and C. S. Frederiksen, 2007: Interdecadal changes in Southern Hemisphere winter storm track modes. Tellus, 59A, 599617, doi:10.1111/j.1600-0870.2007.00264.x.

    • Search Google Scholar
    • Export Citation
  • Grose, M., , B. Timbal, , L. Wilson, , J. Bathols, , and D. Kent, 2015: The subtropical ridge in CMIP5 models, and implications for projections of rainfall in southeast Australia. Aust. Meteor. Oceanogr. J., 65, 90106. [Available online at http://www.climatechangeinaustralia.gov.au/media/ccia/2.1.5/cms_page_media/472/Grose%20etal%202015%20AMOJ%2065%202.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, doi:10.1007/s00382-010-0810-6.

    • Search Google Scholar
    • Export Citation
  • Hope, P., and et al. , 2015: Seasonal and regional signature of the projected southern Australian rainfall reduction. Aust. Meteor. Oceanogr. J., 65, 5471. [Available online at http://www.climatechangeinaustralia.gov.au/media/ccia/2.1.5/cms_page_media/472/Hope%20etal%202015%20AMOJ%2065_1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1–29.

  • Jun, M., , R. Knutti, , and D. W. Nychka, 2008: Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? J. Amer. Stat. Assoc., 103, 934947, doi:10.1198/016214507000001265.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., , and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , R. Furrer, , C. Tebaldi, , J. Cermak, , and G. A. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758, doi:10.1175/2009JCLI3361.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Nguyen, H., , A. Evans, , C. Lucas, , I. Smith, , and B. Timbal, 2013: The Hadley circulation in reanalyses: Climatology, variability, and change. J. Climate, 26, 33573376, doi:10.1175/JCLI-D-12-00224.1.

    • Search Google Scholar
    • Export Citation
  • Paciorek, C. J., , J. S. Risbey, , V. Ventura, , and R. D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15, 15731590, doi:10.1175/1520-0442(2002)015<1573:MIONHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pepler, A. S., , L. V. Alexander, , J. P. Evans, , and S. C. Sherwood, 2016: Zonal winds and southeast Australian rainfall in global and regional climate models. Climate Dyn., 46, 123133, doi:10.1007/s00382-015-2573-6.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1951: A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Meteor., 8, 381394, doi:10.1175/1520-0469(1951)008<0381:ASTDMF>2.0.CO;2; Corrigendum, 9, 78, doi:10.1175/1520-0469(1952)009<0079:C>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reifen, C., , and R. Toumi, 2009: Climate projections: Past performance no guarantee of future skill? Geophys. Res. Lett., 36, L13704, doi:10.1029/2009GL038082.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., , and P. H. Stone, 1996: A case study of the adequacy of GCM simulations for input to regional climate change assessments. J. Climate, 9, 14411467, doi:10.1175/1520-0442(1996)009<1441:ACSOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., , and T. J. O’Kane, 2011: Sources of knowledge and ignorance in climate research. Climatic Change, 108, 755773, doi:10.1007/s10584-011-0186-6.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., , P. J. Lamb, , R. L. Miller, , M. C. Morgan, , and G. H. Roe, 2002: Exploring the structure of regional climate scenarios by combining synoptic and dynamic guidance and GCM output. J. Climate, 15, 10361050, doi:10.1175/1520-0442(2002)015<1036:ETSORC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., , M. J. Pook, , and P. C. McIntosh, 2013: Spatial trends in synoptic rainfall in southern Australia. Geophys. Res. Lett., 40, 37813785, doi:10.1002/grl.50739.

    • Search Google Scholar
    • Export Citation
  • Schaller, N., , I. Mahlstein, , J. Cermak, , and R. Knutti, 2011: Analyzing precipitation projections: A comparison of different approaches to climate model evaluation. J. Geophys. Res., 116, D10118, doi:10.1029/2010JD014963.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., , T. A. Shaw, , and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, 365A, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., , and W. Drosdowsky, 2013: The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 10211034, doi:10.1002/joc.3492.

    • Search Google Scholar
    • Export Citation
  • Van Vuuren, D. P., and et al. , 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Whetton, P., and et al. , Eds., 2015: Climate change in Australia: Projections for Australia’s NRM regions. CSIRO Tech. Rep., 222 pp. [Available online at http://www.climatechangeinaustralia.gov.au/media/ccia/2.1.5/cms_page_media/168/CCIA_2015_NRM_TechnicalReport_WEB.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 75 13
PDF Downloads 50 50 8

Constraints on Southern Australian Rainfall Change Based on Atmospheric Circulation in CMIP5 Simulations

View More View Less
  • 1 CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
  • | 2 Bureau of Meteorology Research and Development, Docklands, Victoria, Australia
  • | 3 CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
© Get Permissions
Restricted access

Abstract

Atmospheric circulation change is likely to be the dominant driver of multidecadal rainfall trends in the midlatitudes with climate change this century. This study examines circulation features relevant to southern Australian rainfall in January and July and explores emergent constraints suggested by the intermodel spread and their impact on the resulting rainfall projection in the CMIP5 ensemble. The authors find relationships between models’ bias and projected change for four features in July, each with suggestions for constraining forced change. The features are the strength of the subtropical jet over Australia, the frequency of blocked days in eastern Australia, the longitude of the peak blocking frequency east of Australia, and the latitude of the storm track within the polar front branch of the split jet. Rejecting models where the bias suggests either the direction or magnitude of change in the features is implausible produces a constraint on the projected rainfall reduction for southern Australia. For RCP8.5 by the end of the century the constrained projections are for a reduction of at least 5% in July (with models showing increase or little change being rejected). Rejecting these models in the January projections, with the assumption the bias affects the entire simulation, leads to a rejection of wet and dry outliers.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0142.s1.

Corresponding author address: Michael R. Grose, CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, TAS 7000, Australia. E-mail: michael.grose@csiro.au

Abstract

Atmospheric circulation change is likely to be the dominant driver of multidecadal rainfall trends in the midlatitudes with climate change this century. This study examines circulation features relevant to southern Australian rainfall in January and July and explores emergent constraints suggested by the intermodel spread and their impact on the resulting rainfall projection in the CMIP5 ensemble. The authors find relationships between models’ bias and projected change for four features in July, each with suggestions for constraining forced change. The features are the strength of the subtropical jet over Australia, the frequency of blocked days in eastern Australia, the longitude of the peak blocking frequency east of Australia, and the latitude of the storm track within the polar front branch of the split jet. Rejecting models where the bias suggests either the direction or magnitude of change in the features is implausible produces a constraint on the projected rainfall reduction for southern Australia. For RCP8.5 by the end of the century the constrained projections are for a reduction of at least 5% in July (with models showing increase or little change being rejected). Rejecting these models in the January projections, with the assumption the bias affects the entire simulation, leads to a rejection of wet and dry outliers.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0142.s1.

Corresponding author address: Michael R. Grose, CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, TAS 7000, Australia. E-mail: michael.grose@csiro.au

Supplementary Materials

    • Supplemental Materials (DOCX 592.14 KB)
Save