• Alvarez, M. D., , M. M. Trovatto, , M. A. Hernández, , and N. González, 2012: Groundwater flow model, recharge estimation and sustainability in an arid region of Patagonia, Argentina. Environ. Earth Sci., 66, 20972108, doi:10.1007/s12665-011-1435-8.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., , R. N. Hoffman, , S. C. Bloom, , J. C. Jusem, , and J. Ardizzone, 1996: A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull. Amer. Meteor. Soc., 77, 869882, doi:10.1175/1520-0477(1996)077<0869:AMGSWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and Y. Liu, 1996: Three‐dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res., 101, 74997518, doi:10.1029/95JD03031.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 26662689, doi:10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., , and P. T. Schickedanz, 1984: The effect of irrigation on warm season precipitation in the southern Great Plains. J. Climate Appl. Meteor., 23, 865888, doi:10.1175/1520-0450(1984)023<0865:TEOIOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Z. H. Xie, 2012: Effects of crop growth and development on regional climate: A case study over East Asian monsoon area. Climate Dyn., 38, 22912305, doi:10.1007/s00382-011-1125-y.

    • Search Google Scholar
    • Export Citation
  • Chen, X., , and Q. Hu, 2004: Groundwater influences on soil moisture and surface evaporation. J. Hydrol., 297, 285300, doi:10.1016/j.jhydrol.2004.04.019.

    • Search Google Scholar
    • Export Citation
  • Coe, M. T., , and J. A. Foley, 2001: Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res., 106, 33493356, doi:10.1029/2000JD900587.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., , F. Dominguez, , Y. Fan, , A. Robock, , M. D. Kustu, , and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Search Google Scholar
    • Export Citation
  • Devic, G., , D. Djordjevic, , and S. Sakan, 2014: Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci. Total Environ., 468–469, 933942, doi:10.1016/j.scitotenv.2013.09.011.

    • Search Google Scholar
    • Export Citation
  • Di, Z., , Z. Xie, , X. Yuan, , X.-J. Tian, , Z. Luo, , and Y. Chen, 2011: Prediction of water table depths under soil water–groundwater interaction and stream water conveyance. Sci. China Earth Sci., 54, 420430, doi:10.1007/s11430-010-4050-8.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Y. Jin, , B. Singh, , and X. Yan, 2013: Trends in land–atmosphere interactions from CMIP5 simulations. J. Hydrometeor., 14, 829849, doi:10.1175/JHM-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Döll, P., and et al. , 2012: Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn., 59–60, 143156, doi:10.1016/j.jog.2011.05.001.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., , D. P. Lettenmaier, , and T. Skaugen, 2006: Effects of irrigation on the water and energy balances of the Colorado and Mekong River basins. J. Hydrol., 324, 210223, doi:10.1016/j.jhydrol.2005.09.028.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., , S. Kanae, , T. Oki, , K. Masuda, , K. Motoya, , N. Shirakawa, , Y. Shen, , and K. Tanaka, 2008: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025, doi:10.5194/hess-12-1007-2008.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and W. H. Lipscomb, 2008: CICE: The Los Alamos sea ice model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., , P. H. Worley, , Y. Yoshida, , J. White, , and J. Levesque, 2005: Practical performance portability in the Parallel Ocean Program (POP). Concurr. Comput. Pract. Exper., 17, 13171327, doi:10.1002/cpe.894.

    • Search Google Scholar
    • Export Citation
  • Khan, S., , T. Rana, , H. Gabriel, , and M. Ullah, 2008: Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrogeol. J., 16, 16351654, doi:10.1007/s10040-008-0336-8.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , P. A. Dirmeyer, , A. N. Hahmann, , R. Ijpelaar, , L. Tyahla, , P. Cox, , and M. J. Suarez, 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor., 3, 363375, doi:10.1175/1525-7541(2002)003<0363:CTDOLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and et al. , 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, M. D., , and O. P. Singh, 2008: How serious are groundwater over-exploitation problems in India: A fresh investigation into an old issue. International Water Management Institute Rep., 20 pp. [Available online at http://publications.iwmi.org/PDF/H041881.pdf.]

  • Lee, E., , T. N. Chase, , B. Rajagopalan, , R. G. Barry, , T. W. Biggs, , and P. J. Lawrence, 2009: Effects of irrigation and vegetation activity on early Indian summer monsoon variability. Int. J. Climatol., 29, 573581, doi:10.1002/joc.1721.

    • Search Google Scholar
    • Export Citation
  • Leng, G., , M. Huang, , Q. Tang, , W. J. Sacks, , H. Lei, , and L. R. Leung, 2013: Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters. J. Geophys. Res. Atmos., 118, 97899803, doi:10.1002/jgrd.50792.

    • Search Google Scholar
    • Export Citation
  • Leng, G., , M. Huang, , Q. Tang, , H. Gao, , and L. R. Leung, 2014: Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States. J. Hydrometeor., 15, 957972, doi:10.1175/JHM-D-13-049.1.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindsay, K., and et al. , 2014: Preindustrial-control and twentieth-century carbon cycle experiments with the Earth system model CESM1(BGC). J. Climate, 27, 89819005, doi:10.1175/JCLI-D-12-00565.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , J. Yu, , and E. Kendy, 2001: Groundwater exploitation and its impact on the environment in the North China Plain. Water Int., 26, 265272, doi:10.1080/02508060108686913.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , D. Qin, , H. Wang, , M. Wang, , and Z. Yang, 2010: Dualistic water cycle pattern and its evolution in Haihe River basin. Chin. Sci. Bull., 55, 16881697, doi:10.1007/s11434-010-3043-5.

    • Search Google Scholar
    • Export Citation
  • Llamas, M. R., 1988: Conflicts between wetland conservation and groundwater exploitation: Two case histories in Spain. Environ. Geol. Water Sci., 11, 241251, doi:10.1007/BF02574814.

    • Search Google Scholar
    • Export Citation
  • Lo, M. H., , and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, doi:10.1002/grl.50108.

    • Search Google Scholar
    • Export Citation
  • Mao, X., , J. Ni, , and Y. Guo, 2000: A case study on characteristics of wastewater effluents in accelerated economic growth areas (in Chinese). Acta. Sci. Circumstantiae, 20, 219224.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam4_desc.pdf.]

  • Neale, R. B., , J. Richter, , S. Park, , P. H. Lauritzen, , S. J. Vavrus, , P. J. Rasch, , and M. H. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, doi:10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and et al. , 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.2/clm/models/lnd/clm/doc/UsersGuide/book1.html.]

  • Omole, D. O., 2013: Sustainable groundwater exploitation in Nigeria. J. Water Resour. Ocean Sci., 2, 914, doi:10.11648/j.wros.20130202.11.

    • Search Google Scholar
    • Export Citation
  • Ozdogan, M., , M. Rodell, , H. K. Beaudoing, , and D. L. Toll, 2010: Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J. Hydrometeor., 11, 171184, doi:10.1175/2009JHM1116.1.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y. N., , N. Hanasaki, , S. Koirala, , J. Cho, , P. J.-F. Yeh, , H. Kim, , S. Kanae, , and T. Oki, 2012a: Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeor., 13, 255269, doi:10.1175/JHM-D-11-013.1.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y. N., , N. Hanasaki, , P. J. Yeh, , T. J. Yamada, , S. Kanae, , and T. Oki, 2012b: Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci., 5, 389392, doi:10.1038/ngeo1476.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, Y. N., , S. Koirala, , P. J. F. Yeh, , N. Hanasaki, , L. Longuevergne, , S. Kanae, , and T. Oki, 2015: Incorporation of groundwater pumping in a global land surface model with the representation of human impacts. Water Resour. Res., 51, 7896, doi:10.1002/2014WR015602.

    • Search Google Scholar
    • Export Citation
  • Qian, T., , A. Dai, , K. E. Trenberth, , and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. J. Hydrometeor., 7, 953975, doi:10.1175/JHM540.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., , and J. S. Famiglietti, 2002: The potential for satellite-based monitoring of groundwater storage changes using GRACE: The High Plains aquifer, Central US. J. Hydrol., 263, 245256, doi:10.1016/S0022-1694(02)00060-4.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., , I. Velicogna, , and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002, doi:10.1038/nature08238.

    • Search Google Scholar
    • Export Citation
  • Shi, J., , R. Ma, , J. Liu, , and Y. Zhang, 2013: Suitability assessment of deep groundwater for drinking, irrigation and industrial purposes in Jiaozuo City, Henan Province, north China. Chin. Sci. Bull., 58, 30983110, doi:10.1007/s11434-013-5952-6.

    • Search Google Scholar
    • Export Citation
  • Siebert, S., , P. Döll, , J. Hoogeveen, , J. M. Faures, , K. Frenken, , and S. Feick, 2005: Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci., 9, 535547, doi:10.5194/hess-9-535-2005.

    • Search Google Scholar
    • Export Citation
  • Siebert, S., , J. Burke, , J. M. Faures, , K. Frenken, , J. Hoogeveen, , P. Döll, , and F. T. Portmann, 2010: Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci., 14, 18631880, doi:10.5194/hess-14-1863-2010.

    • Search Google Scholar
    • Export Citation
  • Siebert, S., , V. Henrich, , K. Frenken, , and J. Burke, 2013: Global Map of Irrigation Areas, version 5. Rheinische Friedrich-Wilhelms-University and FAO. [Available online at http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm.]

  • Sophocleous, M., 2005: Groundwater recharge and sustainability in the high plains aquifer in Kansas, USA. Hydrogeol. J., 13, 351365, doi:10.1007/s10040-004-0385-6.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., , S. Bettadpur, , M. Watkins, , and C. Reigber, 2004: The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Tiwari, V. M., , J. Wahr, , and S. Swenson, 2009: Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett., 36, L18401, doi:10.1029/2009GL039401.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and et al. , 2014: Systematic assessment of the uncertainty in integrated surface water–groundwater modeling based on the probabilistic collocation method. Water Resour. Res., 50, 58485865, doi:10.1002/2014WR015366.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, Z., , and X. Yuan, 2010: Prediction of water table under stream–aquifer interactions over an arid region. Hydrol. Processes, 24, 160169, doi:10.1002/hyp.7434.

    • Search Google Scholar
    • Export Citation
  • Xie, Z., , Z. Di, , Z. Luo, , and Q. Ma, 2012: A quasi-three-dimensional variably saturated groundwater flow model for climate modeling. J. Hydrometeor., 13, 2746, doi:10.1175/JHM-D-10-05019.1.

    • Search Google Scholar
    • Export Citation
  • Xie, Z., , N. Zeng, , H. Wang, , Z. Lin, , X. Tian, , and B. Jia, 2014: Past, present and future of the carbon cycle. Natl. Sci. Rev., 1, 1821, doi:10.1093/nsr/nwt021.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19, 931950, doi:10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., , Z. H. Xie, , and X. B. Zeng, 2014: Impacts of modified Richards equation on RegCM4 regional climate modeling over East Asia. J. Geophys. Res. Atmos., 119, 12 64212 659, doi:10.1002/2014JD021872.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., , Z. Xie, , and M. Liang, 2008: Spatiotemporal prediction of shallow water table depths in continental China. Water Resour. Res., 44, W04414, doi:10.1029/2006WR005453.

    • Search Google Scholar
    • Export Citation
  • Zeng, Y., , and Z. Xie, 2015: Projection and evaluation of the land–atmosphere coupling strength over China by CMIP5 models (in Chinese). Climate Environ. Res., 20, 337346, doi:10.3878/j.issn.1006-9585.2015.14242.

    • Search Google Scholar
    • Export Citation
  • Zeng, Y., , Z. Xie, , Y. Yu, , S. Liu, , L. Wang, , B. Jia, , P. Qin, , and Y. Chen, 2016a: Ecohydrological effects of stream–aquifer water interaction: A case study of the Heihe River basin, northwestern China. Hydrol. Earth Syst. Sci., 20, 23332352, doi:10.5194/hess-20-2333-2016.

    • Search Google Scholar
    • Export Citation
  • Zeng, Y., , Z. Xie, , Y. Yu, , S. Liu, , L. Wang, , J. Zou, , P. Qin, , and B. Jia, 2016b: Effects of anthropogenic water regulation and groundwater lateral flow on land processes. J. Adv. Model. Earth Syst., 8, 11061131, doi:10.1002/2016MS000646.

    • Search Google Scholar
    • Export Citation
  • Zou, J., , Z. Xie, , Y. Yu, , C. Zhan, , and Q. Sun, 2014: Climatic responses to anthropogenic groundwater exploitation: A case study of the Haihe River Basin, northern China. Climate Dyn., 42, 21252145, doi:10.1007/s00382-013-1995-2.

    • Search Google Scholar
    • Export Citation
  • Zou, J., , Z. Xie, , C. Zhan, , P. Qin, , Q. Sun, , B. Jia, , and J. Xia, 2015: Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China. J. Hydrol., 524, 625641, doi:10.1016/j.jhydrol.2015.03.026.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 154 154 19
PDF Downloads 126 126 16

Hydrologic and Climatic Responses to Global Anthropogenic Groundwater Extraction

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 3 Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao, China
© Get Permissions
Restricted access

Abstract

In this study, a groundwater (GW) extraction scheme was incorporated into the Community Earth System Model, version 1.2.0 (CESM1.2.0), to create a new version called CESM1.2_GW, which was used to investigate hydrologic and climatic responses to anthropogenic GW extraction on a global scale. An ensemble of 41-yr simulations with and without GW extraction (estimated based on local water supply and demand) was conducted and analyzed. The results revealed that GW extraction and water consumption caused drying in deep soil layers but wetting in upper layers, along with a rapidly declining GW table in areas with the most severe GW extraction, including the central United States, the north China plain, and northern India and Pakistan. The atmosphere also responded to GW extraction, with cooling at the 850-hPa level over northern India and Pakistan and a large area in northern China and central Russia. Increased precipitation occurred in the north China plain due to increased evapotranspiration from irrigation. Decreased precipitation occurred in northern India because the Indian monsoon and its transport of water vapor were weaker as a result of cooling induced by GW use. Additionally, the background climate change may complicate the precipitation responses to the GW use. Local terrestrial water storage was shown to be unsustainable at the current high GW extraction rate. Thus, a balance between reduced GW withdrawal and rapid economic development must be achieved in order to maintain a sustainable GW resource, especially in regions where GW is being overexploited.

Denotes Open Access content.

Corresponding author address: Dr. Zhenghui Xie, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: zxie@lasg.iap.ac.cn

Abstract

In this study, a groundwater (GW) extraction scheme was incorporated into the Community Earth System Model, version 1.2.0 (CESM1.2.0), to create a new version called CESM1.2_GW, which was used to investigate hydrologic and climatic responses to anthropogenic GW extraction on a global scale. An ensemble of 41-yr simulations with and without GW extraction (estimated based on local water supply and demand) was conducted and analyzed. The results revealed that GW extraction and water consumption caused drying in deep soil layers but wetting in upper layers, along with a rapidly declining GW table in areas with the most severe GW extraction, including the central United States, the north China plain, and northern India and Pakistan. The atmosphere also responded to GW extraction, with cooling at the 850-hPa level over northern India and Pakistan and a large area in northern China and central Russia. Increased precipitation occurred in the north China plain due to increased evapotranspiration from irrigation. Decreased precipitation occurred in northern India because the Indian monsoon and its transport of water vapor were weaker as a result of cooling induced by GW use. Additionally, the background climate change may complicate the precipitation responses to the GW use. Local terrestrial water storage was shown to be unsustainable at the current high GW extraction rate. Thus, a balance between reduced GW withdrawal and rapid economic development must be achieved in order to maintain a sustainable GW resource, especially in regions where GW is being overexploited.

Denotes Open Access content.

Corresponding author address: Dr. Zhenghui Xie, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, P.O. Box 9804, Beijing 100029, China. E-mail: zxie@lasg.iap.ac.cn
Save