• Blechschmidt, A.-M., 2008: A 2-year climatology of polar low events over the Nordic seas from satellite remote sensing. Geophys. Res. Lett., 35, L09815, doi:10.1029/2008GL033706.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., , and S. L. Gray, 2008: An objective climatology of the dynamical forcing of polar lows in the Nordic seas. Int. J. Climatol., 28, 19031919, doi:10.1002/joc.1686.

    • Search Google Scholar
    • Export Citation
  • Cavicchia, L., , H. von Storch, , and S. Gualdi, 2014a: A long-term climatology of medicanes. Climate Dyn., 43, 11831195, doi:10.1007/s00382-013-1893-7.

    • Search Google Scholar
    • Export Citation
  • Cavicchia, L., , H. von Storch, , and S. Gualdi, 2014b: Mediterranean tropical-like cyclones in present and future climate. J. Climate, 27, 74937501, doi:10.1175/JCLI-D-14-00339.1.

    • Search Google Scholar
    • Export Citation
  • Claud, C., , G. Heinemann, , E. Raustein, , and L. Mcmurdie, 2004: Polar low le Cygne: Satellite observations and numerical simulations. Quart. J. Roy. Meteor. Soc., 130, 10751102, doi:10.1256/qj.03.72.

    • Search Google Scholar
    • Export Citation
  • Condron, A., , G. R. Bigg, , and I. A. Renfrew, 2006: Polar mesoscale cyclones in the northeast Atlantic: Comparing climatologies from ERA-40 and satellite imagery. Mon. Wea. Rev., 134, 15181533, doi:10.1175/MWR3136.1.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., , and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 35283540, doi:10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968, doi:10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Genesis and maintenance of “Mediterranean hurricanes.” Adv. Geosci., 2, 217220, doi:10.5194/adgeo-2-217-2005.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 47974802, doi:10.1175/JCLI3908.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 21912 224, doi:10.1073/pnas.1301293110.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and R. Rotunno, 1989: Polar lows as Arctic hurricanes. Tellus, 41A, 117, doi:10.1111/j.1600-0870.1989.tb00362.x.

  • Emanuel, K. A., , and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Emanuel, K. A., , C. DesAutels, , C. Holloway, , and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , S. Ravela, , E. Vivant, , and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, doi:10.1175/BAMS-87-3-299.

    • Search Google Scholar
    • Export Citation
  • Ese, T., , I. Kanestrøm, , and K. Pedersen, 1988: Climatology of polar lows over the Norwegian and Barents Seas. Tellus, 40A, 248255, doi:10.1111/j.1600-0870.1988.tb00345.x.

    • Search Google Scholar
    • Export Citation
  • Føre, I., , J. E. Kristjánsson, , E. W. Kolstad, , T. J. Bracegirdle, , Ø. Saetra, , and B. Røsting, 2012: A ‘hurricane-like’ polar low fuelled by sensible heat flux: High-resolution numerical simulations. Quart. J. Roy. Meteor. Soc., 138, 13081324, doi:10.1002/qj.1876.

    • Search Google Scholar
    • Export Citation
  • Gaertner, M. A., , D. Jacob, , V. Gil, , M. Domínguez, , E. Padorno, , E. Sánchez, , and M. Castro, 2007: Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophys. Res. Lett., 34, L14711, doi:10.1029/2007GL029977.

    • Search Google Scholar
    • Export Citation
  • Homar, V., , R. Romero, , D. J. Stensrud, , C. Ramis, , and S. Alonso, 2003: Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: Dynamical vs. boundary factors. Quart. J. Roy. Meteor. Soc., 129, 14691490, doi:10.1256/qj.01.91.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495, doi:10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2011: A global climatology of favourable conditions for polar lows. Quart. J. Roy. Meteor. Soc., 137, 17491761, doi:10.1002/qj.888.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., , and T. J. Bracegirdle, 2008: Marine cold-air outbreaks in the future: An assessment of IPCC AR4 model results for the Northern Hemisphere. Climate Dyn., 30, 871885, doi:10.1007/s00382-007-0331-0.

    • Search Google Scholar
    • Export Citation
  • Lagouvardos, K., , V. Kotroni, , S. Nickovic, , D. Jovic, , G. Kallos, , and C. J. Tremback, 1999: Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean. Meteor. Appl., 6, 371383, doi:10.1017/S1350482799001309.

    • Search Google Scholar
    • Export Citation
  • Moscatello, A., , M. M. Miglietta, , and R. Rotunno, 2008: Observational analysis of a Mediterranean ‘hurricane’ over south-eastern Italy. Weather, 63, 306311, doi:10.1002/wea.231.

    • Search Google Scholar
    • Export Citation
  • Noer, G., , Ø. Saetra, , T. Lien, , and Y. Gusdal, 2011: A climatological study of polar lows in the Nordic seas. Quart. J. Roy. Meteor. Soc., 137, 17621772, doi:10.1002/qj.846.

    • Search Google Scholar
    • Export Citation
  • Picornell, M. A., , A. Jansà, , A. Genovés, , and J. Campins, 2001: Automated database of mesocyclones from the HIRLAM(INM)-0.5° analyses in the western Mediterranean. Int. J. Climatol., 21, 335354, doi:10.1002/joc.621.

    • Search Google Scholar
    • Export Citation
  • Power, S. B., , F. Delage, , R. Colman, , and A. Moise, 2012: Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J. Climate, 25, 37923809, doi:10.1175/JCLI-D-11-00354.1.

    • Search Google Scholar
    • Export Citation
  • Prichard, B., 2009: A late October polar low. Weather, 64, 270273, doi:10.1002/wea.437.

  • Pytharoulis, I., , G. C. Craig, , and S. P. Ballard, 2000: The hurricane-like Mediterranean cyclone of January 1995. Meteor. Appl., 7, 261279, doi:10.1017/S1350482700001511.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., , and C. Zick, 1987: A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus, 39A, 408425, doi:10.1111/j.1600-0870.1987.tb00318.x.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., , and J. Turner, Eds., 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

  • Reale, O., , and R. Atlas, 2001: Tropical cyclone–like vortices in the extratropics: Observational evidence and synoptic analysis. Wea. Forecasting, 16, 734, doi:10.1175/1520-0434(2001)016<0007:TCLVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., 2003: Polar lows. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Vol. 3, Academic Press, 1761–1768, doi:10.1016/B0-12-227090-8/00317-1.

  • Riahi, K., and et al. , 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, doi:10.1007/s10584-011-0149-y.

    • Search Google Scholar
    • Export Citation
  • Romero, R., , and K. Emanuel, 2013: Medicane risk in a changing climate. J. Geophys. Res. Atmos., 118, 59926001, doi:10.1002/jgrd.50475.

    • Search Google Scholar
    • Export Citation
  • Tous, M., , and R. Romero, 2013: Meteorological environments associated with medicane development. Int. J. Climatol., 33, 114, doi:10.1002/joc.3428.

    • Search Google Scholar
    • Export Citation
  • Tous, M., , R. Romero, , and C. Ramis, 2013: Surface heat fluxes influence on medicane trajectories and intensification. Atmos. Res., 123, 400411, doi:10.1016/j.atmosres.2012.05.022.

    • Search Google Scholar
    • Export Citation
  • Tous, M., , G. Zappa, , R. Romero, , L. Shaffrey, , and P. L. Vidale, 2016: Projected changes in medicanes in the HadGEM3 N512 high-resolution global climate model. Climate Dyn., 47, 19131924, doi:10.1007/s00382-015-2941-2.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., , F. Giorgi, , and E. Coppola, 2014: Mediterranean warm-core cyclones in a warmer world. Climate Dyn., 42, 10531066, doi:10.1007/s00382-013-1723-y.

    • Search Google Scholar
    • Export Citation
  • Wilhelmsen, K., 1985: Climatological study of gale-producing polar lows near Norway. Tellus, 37A, 451459, doi:10.1111/j.1600-0870.1985.tb00443.x.

    • Search Google Scholar
    • Export Citation
  • Zahn, M., , and H. von Storch, 2008: A long-term climatology of North Atlantic polar lows. Geophys. Res. Lett., 35, L22702, doi:10.1029/2008GL035769.

    • Search Google Scholar
    • Export Citation
  • Zahn, M., , and H. von Storch, 2010: Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature, 467, 309312, doi:10.1038/nature09388.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., , L. C. Shaffrey, , K. I. Hodges, , P. G. Sansom, , and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, doi:10.1175/JCLI-D-12-00573.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., , L. C. Shaffrey, , and K. I. Hodges, 2014: Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-Interim reanalysis? Mon. Wea. Rev., 142, 25962608, doi:10.1175/MWR-D-14-00064.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 484 484 34
PDF Downloads 191 191 26

Climate Change and Hurricane-Like Extratropical Cyclones: Projections for North Atlantic Polar Lows and Medicanes Based on CMIP5 Models

View More View Less
  • 1 Departament de Física, Universitat de les Illes Balears, Palma de Mallorca, Spain
  • | 2 Department of Atmospheric Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

A novel statistical–deterministic method is applied to generate thousands of synthetic tracks of North Atlantic (NA) polar lows and Mediterranean hurricanes (“medicanes”); these synthetic storms are compatible with the climates simulated by 30 CMIP5 models in both historical and RCP8.5 simulations for a recent (1986–2005) and a future (2081–2100) period, respectively. Present-to-future multimodel mean changes in storm risk are analyzed, with special attention to robust patterns (in terms of consensus among individual models) and privileging in each case the subset of models exhibiting the highest agreement with the results yielded by two reanalyses. A reduction of about 10%–15% in the overall frequency of NA polar lows that would uniformly affect the full spectrum of storm intensities is expected. In addition, a very robust regional redistribution of cases is obtained, namely a tendency to shift part of the polar low activity from the south Greenland–Icelandic sector toward the Nordic seas closer to Scandinavia. In contrast, the future change in the number of medicanes is unclear (on average the total frequency of storms does not vary), but a profound reshaping of the spectrum of lifetime maximum winds is found; the results project a higher number of moderate and violent medicanes at the expense of weak storms. Spatially, the method projects an increased occurrence of medicanes in the western Mediterranean and Black Sea that is balanced by a reduction of storm tracks in contiguous areas, particularly in the central Mediterranean; however, future extreme events (winds > 60 kt; 1 kt = 0.51 m s−1) become more probable in all Mediterranean subbasins.

Corresponding author address: Departament de Física, Universitat de les Illes Balears, Cra. de Valldemossa km. 7.5, Palma de Mallorca 07122, Spain. E-mail: romu.romero@uib.es

Abstract

A novel statistical–deterministic method is applied to generate thousands of synthetic tracks of North Atlantic (NA) polar lows and Mediterranean hurricanes (“medicanes”); these synthetic storms are compatible with the climates simulated by 30 CMIP5 models in both historical and RCP8.5 simulations for a recent (1986–2005) and a future (2081–2100) period, respectively. Present-to-future multimodel mean changes in storm risk are analyzed, with special attention to robust patterns (in terms of consensus among individual models) and privileging in each case the subset of models exhibiting the highest agreement with the results yielded by two reanalyses. A reduction of about 10%–15% in the overall frequency of NA polar lows that would uniformly affect the full spectrum of storm intensities is expected. In addition, a very robust regional redistribution of cases is obtained, namely a tendency to shift part of the polar low activity from the south Greenland–Icelandic sector toward the Nordic seas closer to Scandinavia. In contrast, the future change in the number of medicanes is unclear (on average the total frequency of storms does not vary), but a profound reshaping of the spectrum of lifetime maximum winds is found; the results project a higher number of moderate and violent medicanes at the expense of weak storms. Spatially, the method projects an increased occurrence of medicanes in the western Mediterranean and Black Sea that is balanced by a reduction of storm tracks in contiguous areas, particularly in the central Mediterranean; however, future extreme events (winds > 60 kt; 1 kt = 0.51 m s−1) become more probable in all Mediterranean subbasins.

Corresponding author address: Departament de Física, Universitat de les Illes Balears, Cra. de Valldemossa km. 7.5, Palma de Mallorca 07122, Spain. E-mail: romu.romero@uib.es
Save