• Bacmeister, J. T., , M. F. Wehner, , R. B. Neale, , A. Gettelman, , C. Hannay, , P. H. Lauritzen, , J. M. Caron, , and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, doi:10.1175/JCLI-D-13-00387.1.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , K. A. Reed, , C. Hannay, , P. Lawrence, , S. Bates, , J. E. Truesdale, , N. Rosenbloom, , and M. Levy, 2016: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, doi:10.1007/s10584-016-1750-x, in press.

    • Search Google Scholar
    • Export Citation
  • Bell, R., , J. Strachan, , P. L. Vidale, , K. Hodges, , and M. Roberts, 2013: Response of tropical cyclones to idealized climate change experiments in a global high-resolution coupled general circulation model. J. Climate, 26, 79667980, doi:10.1175/JCLI-D-12-00749.1.

    • Search Google Scholar
    • Export Citation
  • Bolvin, D. T., , R. F. Adler, , G. J. Huffman, , E. J. Nelkin, , and J. P. Poutiainen, 2009: Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J. Appl. Meteor. Climatol., 48, 18431857, doi:10.1175/2009JAMC2147.1.

    • Search Google Scholar
    • Export Citation
  • Bueti, M. R., , I. Ginis, , L. M. Rothstein, , and S. M. Griffies, 2014: Tropical cyclone–induced thermocline warming and its regional and global impacts. J. Climate, 27, 69786999, doi:10.1175/JCLI-D-14-00152.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, doi:10.1175/JCLI-D-12-00549.1.

    • Search Google Scholar
    • Export Citation
  • Craig, A. P., , M. Vertenstein, , and R. Jacob, 2012: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl., 26, 3142, doi:10.1177/1094342011428141.

    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., , F. Chauvin, , and F. Roux, 2012: Impact of the configuration of stretching and ocean–atmosphere coupling on tropical cyclone activity in the variable-resolution GCM ARPEGE. Climate Dyn., 39, 23432359, doi:10.1007/s00382-012-1561-3.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., , G. J. Holland, , C. L. Bruyère, , L. R. Leung, , and A. Suzuki-Parker, 2015: Modeling high-impact weather and climate: Lessons from a tropical cyclone perspective. Climatic Change, 129, 381395, doi:10.1007/s10584-013-0954-6.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106, 14 77114 781, doi:10.1029/2000JD900641.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2015: Effect of upper-ocean evolution on projected trends in tropical cyclone activity. J. Climate, 28, 81658170, doi:10.1175/JCLI-D-15-0401.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., , C. DesAutels, , C. Holloway, , and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fogli, P. G., , and D. Iovino, 2014: CMCC–CESM–NEMO: Toward the new CMCC Earth System Model. CMCC Research Rep. RP0248, 19 pp. [Available online at http://www.cmcc.it/wp-content/uploads/2015/02/rp0248-ans-12-2014.pdf.]

  • Haarsma, R. J., and et al. , 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, doi:10.5194/gmd-9-4185-2016.

    • Search Google Scholar
    • Export Citation
  • Horn, M., and et al. , 2014: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Climate, 27, 91979213, doi:10.1175/JCLI-D-14-00200.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., , I.-I. Lin, , C. Chou, , and R.-H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, doi:10.1038/ncomms8188.

    • Search Google Scholar
    • Export Citation
  • Hunke, E., , and W. H. Lipscomb, 2008: CICE: The Los Alamos sea ice model, documentation and software, version 4.0. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hurrell, J. W., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., , G. A. Vecchi, , T. R. Knutson, , W. G. Anderson, , T. L. Delworth, , A. Rosati, , F. Zeng, , and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and et al. , 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182196, doi:10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., , and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, doi:10.1175/2010JCLI3763.1.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., , F. D. Marks, , and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, doi:10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G., and et al. , 2008: NEMO ocean engine version 3.0. Institut Pierre-Simon Laplace Rep. 27, 209 pp. [Available online at http://www.nemo-ocean.eu/Media/Files/NEMO_book_V3_0.pdf.]

  • Murakami, H., 2014: Tropical cyclones in reanalysis data sets. Geophys. Res. Lett., 41, 21332141, doi:10.1002/2014GL059519.

  • Murakami, H., and et al. , 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, doi:10.1175/JCLI-D-15-0216.1.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and et al. , 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

  • Pezza, A. B., , and I. Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett., 32, L15712, doi:10.1029/2005GL023390.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, doi:10.1029/2011MS000099.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , J. T. Bacmeister, , N. A. Rosenbloom, , M. F. Wehner, , S. C. Bates, , P. H. Lauritzen, , J. E. Truesdale, , and C. Hannay, 2015: Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys. Res. Lett., 42, 36033608, doi:10.1002/2015GL063974.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and et al. , 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., , S. Gualdi, , G. Villarini, , G. A. Vecchi, , M. Zhao, , K. Walsh, , and A. Navarra, 2014: Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J. Climate, 27, 46424654, doi:10.1175/JCLI-D-14-00065.1.

    • Search Google Scholar
    • Export Citation
  • Shaevitz, D. A., and et al. , 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst., 6, 11541172, doi:10.1002/2014MS000372.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and et al. , 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, doi:10.1002/2014MS000363.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., , M. Goes, , M. E. Mann, , and K. Keller, 2010: Climate response to tropical cyclone‐induced ocean mixing in an Earth system model of intermediate complexity. J. Geophys. Res., 115, C10042, doi:10.1029/2010JC006106.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , D. A. Lavers, , E. Scoccimarro, , M. Zhao, , M. F. Wehner, , G. Vecchi, , and T. Knutson, 2014: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, doi:10.1175/JCLI-D-13-00780.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., , K. A. Emanuel, , M. Lengaigne, , J. Vialard, , and G. Madec, 2014: Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst., 6, 680699, doi:10.1002/2014MS000327.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., , S. Lavender, , E. Scoccimarro, , and H. Murakami, 2013: Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dyn., 40, 585599, doi:10.1007/s00382-012-1298-z.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., and et al. , 2015: Hurricanes and climate: The U.S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., 96, 9971017, doi:10.1175/BAMS-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and et al. , 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, doi:10.1002/2013MS000276.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., , K. A. Reed, , J. T. Bacmeister, , A. P. Craig, , S. C. Bates, , and N. A. Rosenbloom, 2016: Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations. Geosci. Model Dev., 9, 779788, doi:10.5194/gmd-9-779-2016.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 199 199 43
PDF Downloads 212 212 65

Tropical Cyclone Interaction with the Ocean: The Role of High-Frequency (Subdaily) Coupled Processes

View More View Less
  • 1 Istituto Nazionale di Geofisica e Vulcanologia, and Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy
  • | 2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy
  • | 3 School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
  • | 4 Istituto Nazionale di Geofisica e Vulcanologia, and Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy
© Get Permissions
Restricted access

Abstract

Through tropical cyclone (TC) activity the ocean and the atmosphere exchange a large amount of energy. In this work possible improvements introduced by a higher coupling frequency are tested between the two components of a climate model in the representation of TC intensity and TC–ocean feedbacks. The analysis is based on the new Centro Euro-Mediterraneo per I Cambiamenti Climatici Climate Model (CMCC-CM2-VHR), capable of representing realistic TCs up to category-5 storms. A significant role of the negative sea surface temperature (SST) feedback, leading to a weakening of the cyclone intensity, is made apparent by the improved representation of high-frequency coupled processes. The first part of this study demonstrates that a more realistic representation of strong TC count is obtained by coupling atmosphere and ocean components at hourly instead of daily frequency. Coherently, the positive bias of the annually averaged power dissipation index associated with TCs is reduced by one order of magnitude when coupling at the hourly frequency, compared to both forced mode and daily coupling frequency results. The second part of this work shows a case study (a modeled category-5 typhoon) analysis to verify the impact of a more realistic representation of the high-frequency coupling in representing the TC effect on the ocean; the theoretical subsurface warming induced by TCs is well represented when coupling the two components at the higher frequency. This work demonstrates that an increased horizontal resolution of model components is not sufficient to ensure a realistic representation of intense and fast-moving systems, such as tropical and extratropical cyclones, but a concurrent increase in coupling frequency is required.

Corresponding author address: Enrico Scoccimarro, Istituto Nazionale di Geofisica e Vulcanologia, Via M. Franceschini 31, 40128 Bologna, Italy. E-mail: enrico.scoccimarro@ingv.it

Abstract

Through tropical cyclone (TC) activity the ocean and the atmosphere exchange a large amount of energy. In this work possible improvements introduced by a higher coupling frequency are tested between the two components of a climate model in the representation of TC intensity and TC–ocean feedbacks. The analysis is based on the new Centro Euro-Mediterraneo per I Cambiamenti Climatici Climate Model (CMCC-CM2-VHR), capable of representing realistic TCs up to category-5 storms. A significant role of the negative sea surface temperature (SST) feedback, leading to a weakening of the cyclone intensity, is made apparent by the improved representation of high-frequency coupled processes. The first part of this study demonstrates that a more realistic representation of strong TC count is obtained by coupling atmosphere and ocean components at hourly instead of daily frequency. Coherently, the positive bias of the annually averaged power dissipation index associated with TCs is reduced by one order of magnitude when coupling at the hourly frequency, compared to both forced mode and daily coupling frequency results. The second part of this work shows a case study (a modeled category-5 typhoon) analysis to verify the impact of a more realistic representation of the high-frequency coupling in representing the TC effect on the ocean; the theoretical subsurface warming induced by TCs is well represented when coupling the two components at the higher frequency. This work demonstrates that an increased horizontal resolution of model components is not sufficient to ensure a realistic representation of intense and fast-moving systems, such as tropical and extratropical cyclones, but a concurrent increase in coupling frequency is required.

Corresponding author address: Enrico Scoccimarro, Istituto Nazionale di Geofisica e Vulcanologia, Via M. Franceschini 31, 40128 Bologna, Italy. E-mail: enrico.scoccimarro@ingv.it
Save