• Abdalla, O., , and R. B. Y. Al-Abri, 2011: Groundwater recharge in arid areas induced by tropical cyclones: Lessons learned from Gonu 2007 in Sultanate of Oman. Environ. Earth Sci., 63, 229239, doi:10.1007/s12665-010-0688-y.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., , A. Behrangi, , S. Sorooshian, , K. Hsu, , and E. Amitai, 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, doi:10.1029/2010JD014741.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., , and J. Cangialosi, 2011: Tropical cyclone report: Hurricane Irene (AL092011) 21–28 August 2011. National Hurricane Center Rep. AL092011, 45 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf.]

  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, doi:10.1029/2010GL046258.

    • Search Google Scholar
    • Export Citation
  • Bell, R., , K. Hodges, , P. L. Vidale, , J. Strachan, , and M. Roberts, 2014: Simulation of the global ENSO–tropical cyclone teleconnection by a high-resolution coupled general circulation model. J. Climate, 27, 64046422, doi:10.1175/JCLI-D-13-00559.1.

    • Search Google Scholar
    • Export Citation
  • BoM, 2012: Severe Tropical Cyclone Yasi. Australian Government Bureau of Meteorology. [Available online at http://www.bom.gov.au/cyclone/history/yasi.shtml.]

  • Bove, M. C., , J. J. O’Brien, , J. B. Eisner, , C. W. Landsea, , and X. Niu, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, doi:10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Breña-Naranjo, J. A., , A. Pedrozo-Acuña, , O. Pozos-Estrada, , S. A. Jiménez-López, , and M. R. López-López, 2015: The contribution of tropical cyclones to rainfall in Mexico. Phys. Chem. Earth, 83–84, 111122, doi:10.1016/j.pce.2015.05.011.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, doi:10.1175/JCLI3457.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Y. Lei, , C.-H. Sui, , X. Lin, , and F. Ren, 2012: Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century. Geophys. Res. Lett., 39, L18702, doi:10.1029/2012GL052945.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., , and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Y. Fu, 2015: Contribution of tropical cyclone rainfall at categories to total precipitation over the western North Pacific from 1998 to 2007. Sci. China Earth Sci., 58, 20152025, doi:10.1007/s11430-015-5103-9.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , E. E. Ebert, , K. J. E. Walsh, , and N. E. Davidson, 2013: Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia. J. Geophys. Res. Atmos., 118, 11 96611 978, doi:10.1002/2013JD020319.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., , K.-T. Chang, , Y.-J. Chiu, , S.-M. Lau, , and H.-Y. Lee, 2013: Quantifying rainfall controls on catchment-scale landslide erosion in Taiwan. Earth Surf. Processes Landforms, 38, 372382, doi:10.1002/esp.3284.

    • Search Google Scholar
    • Export Citation
  • CPC, 2016: Cold and warm episodes by season. NOAA/Climate Prediction Center. [Available online at http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml.]

  • Czajkowski, J., , G. Villarini, , E. Michel-Kerjan, , and J. A. Smith, 2013: Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ. Res. Lett., 8, 044056, doi:10.1088/1748-9326/8/4/044056.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., 2013: Seasonal tropical cyclone rain volumes over Australia. J. Climate, 26, 59585964, doi:10.1175/JCLI-D-12-00778.1.

  • Dare, R. A., , N. E. Davidson, , and J. L. McBride, 2012: Tropical cyclone contribution to rainfall over Australia. Mon. Wea. Rev., 140, 36063619, doi:10.1175/MWR-D-11-00340.1.

    • Search Google Scholar
    • Export Citation
  • Derin, Y., , and K. K. Yilmaz, 2014: Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeor., 15, 14981516, doi:10.1175/JHM-D-13-0191.1.

    • Search Google Scholar
    • Export Citation
  • Fors, J. R., 1977: Tropical cyclone Kathleen. NOAA Tech. Memo. NWS WR-114, 29 pp. [Available online at http://docs.lib.noaa.gov/noaa_documents/NWS/NWS_WR/TM_NWS_WR_114.PDF.]

  • Huffman, G. J., and et al. , 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Iacovelli, D., , and T. Vasquez, 1998: Supertyphoon Tip: “Shattering all records.” Mar. Wea. Log, 42, 48. [Available online at http://www.vos.noaa.gov/MWL/aug1998.pdf.]

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, doi:10.1175/2009JCLI3303.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , C. Liu, , and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274, doi:10.1175/2011JAMC2662.1.

    • Search Google Scholar
    • Export Citation
  • Kam, J., , J. Sheffield, , X. Yuan, , and E. F. Wood, 2013: The influence of Atlantic tropical cyclones on drought over the eastern United States (1980–2007). J. Climate, 26, 30673086, doi:10.1175/JCLI-D-12-00244.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., , G. A. Vecchi, , T. R. Knutson, , W. G. Anderson, , T. L. Delworth, , A. Rosati, , F. Zeng, , and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: El Niño–Southern Oscillation’s impact on Atlantic basin hurricanes and U.S. landfalls. J. Climate, 24, 12521263, doi:10.1175/2010JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knight, D. B., , and R. E. Davis, 2009: Contribution of tropical cyclones to extreme rainfall events in the southeastern United States. J. Geophys. Res., 114, D23102, doi:10.1029/2009JD012511.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Knutson, T. R., , J. J. Sirutis, , M. Zhao, , R. E. Tuleya, , M. Bender, , G. A. Vecchi, , G. Villarini, , and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, doi:10.1175/JCLI-D-15-0129.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , D. R. Easterling, , D. A. R. Kristovich, , B. Gleason, , L. Stoecker, , and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, doi:10.1029/2010GL045164.

    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., , and D. J. Abbs, 2013: Trends in Australian rainfall: Contribution of tropical cyclones and closed lows. Climate Dyn., 40, 317326, doi:10.1007/s00382-012-1566-y.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-H., , C.-H. Ho, , and J.-H. Kim, 2010: Influence of tropical cyclone landfalls on spatiotemporal variations in typhoon season rainfall over south China. Adv. Atmos. Sci., 27, 443454, doi:10.1007/s00376-009-9106-3.

    • Search Google Scholar
    • Export Citation
  • Mendelsohn, R., , K. Emanuel, , S. Chonabayashi, , and L. Bakkensen, 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209, doi:10.1038/nclimate1357.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., , I. Durre, , R. S. Vose, , B. E. Gleason, , and T. G. Houston, 2012a: An overview of the Global Historical Climatology Network-daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and et al. , 2012b: Global Historical Climatology Network-Daily (GHCN-Daily), version 3.12, NOAA/National Climatic Data Center, doi:10.7289/V5D21VHZ.

  • Ng, B., , K. Walsh, , and S. Lavender, 2015: The contribution of tropical cyclones to rainfall in northwest Australia. Int. J. Climatol., 35, 26892697, doi:10.1002/joc.4148.

    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., , B. Chatenoux, , H. Dao, , A. De Bono, , C. Herold, , J. Kossin, , F. Mouton, , and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, doi:10.1038/nclimate1410.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., , and B. R. Nelson, 2013: Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis. Water Resour. Res., 49, 72367254, doi:10.1002/wrcr.20527.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., , and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). Hydrol. Earth Syst. Sci., 19, 20372056, doi:10.5194/hess-19-2037-2015.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, doi:10.1175/BAMS-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Ren, F., , G. Wu, , W. Dong, , X. Wang, , Y. Wang, , W. Ai, , and W. Li, 2006: Changes in tropical cyclone precipitation over China. Geophys. Res. Lett., 33, L20702, doi:10.1029/2006GL027951.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., , A. Grundstein, , and T. L. Mote, 2007: Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett., 34, L23810, doi:10.1029/2007GL031694.

    • Search Google Scholar
    • Export Citation
  • Skok, G., , J. Bacmeister, , and J. Tribbia, 2013: Analysis of tropical cyclone precipitation using an object-based algorithm. J. Climate, 26, 25632579, doi:10.1175/JCLI-D-12-00135.1.

    • Search Google Scholar
    • Export Citation
  • Vila, D. A., , L. G. G. de Goncalves, , D. L. Toll, , and J. R. Rozante, 2009: Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeor., 10, 533543, doi:10.1175/2008JHM1048.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and R. F. Denniston, 2016: Contribution of tropical cyclones to extreme rainfall in Australia. Int. J. Climatol., 36, 10191025, doi:10.1002/joc.4393.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , J. A. Smith, , M. L. Baeck, , T. Marchok, , and G. A. Vecchi, 2011: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res., 116, D23116, doi:10.1029/2011JD016175.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , R. Goska, , J. A. Smith, , and G. A. Vecchi, 2014a: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, doi:10.1175/BAMS-D-13-00060.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , D. A. Lavers, , E. Scoccimarro, , M. Zhao, , M. F. Wehner, , G. A. Vecchi, , T. R. Knutson, , and K. A. Reed, 2014b: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, doi:10.1175/JCLI-D-13-00780.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., , M. Gemmer, , Y. Luo, , and Y. Wang, 2010: Tropical cyclones and heavy rainfall in Fujian Province, China. Quat. Int., 226, 122128, doi:10.1016/j.quaint.2010.03.015.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., , Q. Liu, , and L. Wu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489495, doi:10.1175/2008BAMS2631.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 510 510 76
PDF Downloads 446 446 56

Contribution of Tropical Cyclones to Rainfall at the Global Scale

View More View Less
  • 1 IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
  • | 2 NOAA/GFDL, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

This study quantifies the relative contribution of tropical cyclones (TCs) to annual, seasonal, and extreme rainfall and examines the connection between El Niño–Southern Oscillation (ENSO) and the occurrence of extreme TC-induced rainfall across the globe. The authors use historical 6-h best-track TC datasets and daily precipitation data from 18 607 global rain gauges with at least 25 complete years of data between 1970 and 2014. The highest TC-induced rainfall totals occur in East Asia (>400 mm yr−1) and northeastern Australia (>200 mm yr−1), followed by the southeastern United States and along the coast of the Gulf of Mexico (100–150 mm yr−1). Fractionally, TCs account for 35%–50% of the mean annual rainfall in northwestern Australia, southeastern China, the northern Philippines, and Baja California, Mexico. Seasonally, between 40% and 50% of TC-induced rain is recorded along the western coast of Australia and in islands of the south Indian Ocean in the austral summer and in East Asia and Mexico in boreal summer and fall. In terms of extremes, using annual maximum and peak-over-threshold approaches, the highest proportions of TC-induced rainfall are found in East Asia, followed by Australia and North and Central America, with fractional contributions generally decreasing farther inland from the coast. The relationship between TC-induced extreme rainfall and ENSO reveals that TC-induced extreme rainfall tends to occur more frequently in Australia and along the U.S. East Coast during La Niña and in East Asia and the northwestern Pacific islands during El Niño.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/ JCLI-D-16-0298.s1.

Corresponding author address: Abdou Khouakhi, IIHR—Hydroscience and Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242. E-mail: abdou-khouakhi@uiowa.edu

Abstract

This study quantifies the relative contribution of tropical cyclones (TCs) to annual, seasonal, and extreme rainfall and examines the connection between El Niño–Southern Oscillation (ENSO) and the occurrence of extreme TC-induced rainfall across the globe. The authors use historical 6-h best-track TC datasets and daily precipitation data from 18 607 global rain gauges with at least 25 complete years of data between 1970 and 2014. The highest TC-induced rainfall totals occur in East Asia (>400 mm yr−1) and northeastern Australia (>200 mm yr−1), followed by the southeastern United States and along the coast of the Gulf of Mexico (100–150 mm yr−1). Fractionally, TCs account for 35%–50% of the mean annual rainfall in northwestern Australia, southeastern China, the northern Philippines, and Baja California, Mexico. Seasonally, between 40% and 50% of TC-induced rain is recorded along the western coast of Australia and in islands of the south Indian Ocean in the austral summer and in East Asia and Mexico in boreal summer and fall. In terms of extremes, using annual maximum and peak-over-threshold approaches, the highest proportions of TC-induced rainfall are found in East Asia, followed by Australia and North and Central America, with fractional contributions generally decreasing farther inland from the coast. The relationship between TC-induced extreme rainfall and ENSO reveals that TC-induced extreme rainfall tends to occur more frequently in Australia and along the U.S. East Coast during La Niña and in East Asia and the northwestern Pacific islands during El Niño.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/ JCLI-D-16-0298.s1.

Corresponding author address: Abdou Khouakhi, IIHR—Hydroscience and Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242. E-mail: abdou-khouakhi@uiowa.edu

Supplementary Materials

    • Supplemental Materials (DOCX 466.48 KB)
Save