• Alexeev, V. A., , P. L. Langen, , and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, doi:10.1007/s00382-005-0018-3.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., , C. M. Bitz, , and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, doi:10.1175/JCLI-D-12-00544.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., , D. L. Hartmann, , and M. J. Webb, 2016: Mechanisms of the negative shortwave cloud feedback in high latitudes. J. Climate, 29, 139157, doi:10.1175/JCLI-D-15-0327.1.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., 1975: Global climate change: An investigation of atmospheric feedback mechanisms. Tellus, 27A, 193198, doi:10.1111/j.2153-3490.1975.tb01672.x.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , A. Arakawa, , D. J. Baker, , B. Bolin, , and R. E. Dickinson, 1979: Carbon dioxide and climate: A scientific assessment. National Academy of Sciences Tech. Rep., 34 pp., doi:10.17226/12181.

  • Colman, R. A., , S. B. Power, , and B. J. McAvaney, 1997: Non-linear climate feedback analysis in an atmospheric general circulation model. Climate Dyn., 13, 717731, doi:10.1007/s003820050193.

    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., , and M. F. Jansen, 2016: Analytic radiative–advective equilibrium as a model for high-latitude climate. Geophys. Res. Lett., 43, 449457, doi:10.1002/2015GL067172.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., , and G. H. Roe, 2013a: Four perspectives on climate feedbacks. Geophys. Res. Lett., 40, 40074011, doi:10.1002/grl.50711.

  • Feldl, N., , and G. H. Roe, 2013b: The nonlinear and nonlocal nature of climate feedbacks. J. Climate, 26, 82898304, doi:10.1175/JCLI-D-12-00631.1.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., , and S. Bordoni, 2016: Characterizing the Hadley circulation response through regional climate feedbacks. J. Climate, 29, 613622, doi:10.1175/JCLI-D-15-0424.1.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., , and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, doi:10.1007/s00382-009-0535-6.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., , P. L. Langen, , and T. Mauritsen, 2014: Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J. Climate, 27, 44334450, doi:10.1175/JCLI-D-13-00551.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , A. Lacis, , D. Rind, , G. Russell, , P. Stone, , I. Fung, , R. Ruedy, , and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

  • Hansen, J., and et al. , 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.

  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, doi:10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, S. A., , Y. Ming, , and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, doi:10.1175/JCLI-D-14-00165.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., , and M. Zhang, 2014: The implication of radiative forcing and feedback for meridional energy transport. Geophys. Res. Lett., 41, 16651672, doi:10.1002/2013GL059079.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., 2010: Compensation between model feedbacks and curtailment of climate sensitivity. J. Climate, 23, 30093018, doi:10.1175/2010JCLI3380.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , D. M. W. Frierson, , and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., , and T. Schneider, 2008: Extent of Hadley circulations in dry atmospheres. Geophys. Res. Lett., 35, L23803, doi:10.1029/2008GL035847.

    • Search Google Scholar
    • Export Citation
  • Levine, X. J., , and T. Schneider, 2015: Baroclinic eddies and the extent of the Hadley circulation: An idealized GCM study. J. Atmos. Sci., 72, 27442761, doi:10.1175/JAS-D-14-0152.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. A. Vecchi, , and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., , R. G. Graversen, , D. Klocke, , P. L. Langen, , B. Stevens, , and L. Tomassini, 2013: Climate feedback efficiency and synergy. Climate Dyn., 41, 25392554, doi:10.1007/s00382-013-1808-7.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2015: Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc. Natl. Acad. Sci. USA, 112, 13 16713 171, doi:10.1073/pnas.1508268112.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., 2016: Does humidity’s seasonal cycle affect the annual-mean tropical precipitation response to sulfate aerosol forcing? J. Climate, 29, 14511460, doi:10.1175/JCLI-D-15-0388.1.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, doi:10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., , and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., , and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 15871614, doi:10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2009: Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet. Sci., 37, 93115, doi:10.1146/annurev.earth.061008.134734.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., , N. Feldl, , K. C. Armour, , Y.-T. Hwang, , and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, doi:10.1038/ngeo2346.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., , K. C. Armour, , D. S. Battisti, , N. Feldl, , and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, doi:10.1002/2013GL058955.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., , C. Piani, , W. J. Ingram, , D. A. Stone, , and M. R. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190, doi:10.1007/s00382-007-0280-7.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., 1985: Feedback analysis of results from energy balance and radiative–convective models. The Potential Climatic Effects of Increasing Carbon Dioxide, M. C. MacCracken and F. M. Luther, Eds., U.S. Department of Energy, 280–319.

  • Seo, J., , S. M. Kang, , and D. M. W. Frierson, 2014: Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Climate, 27, 30353042, doi:10.1175/JCLI-D-13-00691.1.

    • Search Google Scholar
    • Export Citation
  • Shell, K. M., , J. T. Kiehl, , and C. A. Shields, 2008: Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. J. Climate, 21, 22692282, doi:10.1175/2007JCLI2044.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899927, doi:10.1002/qj.49711347710.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , I. M. Held, , R. Colman, , K. M. Shell, , J. T. Kiehl, , and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. P., , J. M. Edwards, , M. D. Glew, , P. Hignett, , and A. Slingo, 1996: Studies with a flexible new radiation code. II: Comparisons with aircraft short-wave observations. Quart. J. Roy. Meteor. Soc., 122, 839861, doi:10.1002/qj.49712253204.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, doi:10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., , and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, doi:10.1038/ngeo2345.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., and et al. , 2016: The Tropical Rain Belts with an Annual Cycle and Continent Model Intercomparison Project: TRACMIP. J. Adv. Model. Earth Syst., doi:10.1002/2016MS000748, in press.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624, doi:10.1175/JCLI-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , S. A. Klein, , and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754, doi:10.1175/JCLI-D-11-00249.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 196 196 33
PDF Downloads 163 163 35

Coupled High-Latitude Climate Feedbacks and Their Impact on Atmospheric Heat Transport

View More View Less
  • 1 Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, California
  • | 2 Environmental Science and Engineering, California Institute of Technology, Pasadena, California
  • | 3 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

The response of atmospheric heat transport to anthropogenic warming is determined by the anomalous meridional energy gradient. Feedback analysis offers a characterization of that gradient and hence reveals how uncertainty in physical processes may translate into uncertainty in the circulation response. However, individual feedbacks do not act in isolation. Anomalies associated with one feedback may be compensated by another, as is the case for the positive water vapor and negative lapse rate feedbacks in the tropics. Here a set of idealized experiments are performed in an aquaplanet model to evaluate the coupling between the surface albedo feedback and other feedbacks, including the impact on atmospheric heat transport. In the tropics, the dynamical response manifests as changes in the intensity and structure of the overturning Hadley circulation. Only half of the range of Hadley cell weakening exhibited in these experiments is found to be attributable to imposed, systematic variations in the surface albedo feedback. Changes in extratropical clouds that accompany the albedo changes explain the remaining spread. The feedback-driven circulation changes are compensated by eddy energy flux changes, which reduce the overall spread among experiments. These findings have implications for the efficiency with which the climate system, including tropical circulation and the hydrological cycle, adjusts to high-latitude feedbacks over climate states that range from perennial or seasonal ice to ice-free conditions in the Arctic.

Corresponding author address: Nicole Feldl, Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064. E-mail: nfeldl@ucsc.edu

Abstract

The response of atmospheric heat transport to anthropogenic warming is determined by the anomalous meridional energy gradient. Feedback analysis offers a characterization of that gradient and hence reveals how uncertainty in physical processes may translate into uncertainty in the circulation response. However, individual feedbacks do not act in isolation. Anomalies associated with one feedback may be compensated by another, as is the case for the positive water vapor and negative lapse rate feedbacks in the tropics. Here a set of idealized experiments are performed in an aquaplanet model to evaluate the coupling between the surface albedo feedback and other feedbacks, including the impact on atmospheric heat transport. In the tropics, the dynamical response manifests as changes in the intensity and structure of the overturning Hadley circulation. Only half of the range of Hadley cell weakening exhibited in these experiments is found to be attributable to imposed, systematic variations in the surface albedo feedback. Changes in extratropical clouds that accompany the albedo changes explain the remaining spread. The feedback-driven circulation changes are compensated by eddy energy flux changes, which reduce the overall spread among experiments. These findings have implications for the efficiency with which the climate system, including tropical circulation and the hydrological cycle, adjusts to high-latitude feedbacks over climate states that range from perennial or seasonal ice to ice-free conditions in the Arctic.

Corresponding author address: Nicole Feldl, Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064. E-mail: nfeldl@ucsc.edu
Save