• Bindoff, N. L., and et al. , 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 867–952. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter10_FINAL.pdf.]

  • Christy, J. R., 2015: Testimony. Data or dogma? Promoting open inquiry in the debate over the magnitude of human impact on Earth’s climate. Hearing in front of the U.S. Senate Committee on Commerce, Science, and Transportation, Subcommittee on Space, Science, and Competitiveness, 8 December 2015. [Available online at https://www.commerce.senate.gov/public/_cache/files/fcbf4cb6-3128-4fdc-b524-7f2ad4944c1d/80931BD995AF75BA7B819A51ADA9CE99.dr.-john-christy-testimony.pdf.]

  • Christy, J. R., , W. B. Norris, , R. W. Spencer, , and J. J. Hnilo, 2007: Tropospheric temperature change since 1979 from tropical radiosonde and satellite measurements. J. Geophys. Res., 112, D06102, doi:10.1029/2005JD006881.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., , and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, doi:10.1002/qj.2297.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., , and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi:10.1029/2009GL037810.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and et al. , 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res., 118, 50295060, doi:10.1002/jgrd.50316.

    • Search Google Scholar
    • Export Citation
  • Flannaghan, T. J., , S. Fueglistaler, , I. M. Held, , S. Po-Chedley, , B. Wyman, , and M. Zhao, 2014: Tropical temperature trends in atmospheric general circulation model simulations and the impact of uncertainties in observed SSTs. J. Geophys. Res. Atmos., 119, 13 32713 337, doi:10.1002/2014JD022365.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and C. M. Johanson, 2004: Stratospheric influences on MSU-derived tropospheric temperature trends: A direct error analysis. J. Climate, 17, 46364640, doi:10.1175/JCLI-3267.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and C. M. Johanson, 2005: Satellite-derived vertical dependence of tropical tropospheric temperature trends. Geophys. Res. Lett., 32, L10703, doi:10.1029/2004GL022266.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , C. M. Johanson, , S. G. Warren, , and D. J. Seidel, 2004: Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature, 429, 5558, doi:10.1038/nature02524.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. Manabe, , and C. M. Johanson, 2011: On the warming in the tropical upper troposphere: Models versus observations. Geophys. Res. Lett., 38, L15704, doi:10.1029/2011GL048101.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , N. P. Gillett, , and F. W. Zwiers, 2013a: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767769, doi:10.1038/nclimate1972.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , K. von Salzen, , J. N. S. Cole, , N. P. Gillett, , and J.-P. Vernier, 2013b: Surface response to stratospheric aerosol changes in a coupled atmosphere–ocean model. Geophys. Res. Lett., 40, 584588, doi:10.1002/grl.50156.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and et al. , 2016: Making sense of the early-2000s warming slowdown. Nat. Climate Change, 6, 224228, doi:10.1038/nclimate2938.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., , B. D. Santer, , J. S. Boyle, , J. R. Christy, , N. E. Graham, , and R. J. Ross, 2000: Multidecadal changes in the vertical structure of the tropical troposphere. Science, 287, 12421245, doi:10.1126/science.287.5456.1242.

    • Search Google Scholar
    • Export Citation
  • Gilford, D., , S. Solomon, , and R. W. Portman, 2016: Radiative impacts of the 2011 abrupt drops in water vapor and ozone in the tropical tropopause layer. J. Climate, 29, 595612, doi:10.1175/JCLI-D-15-0167.1.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., , B. D. Santer, , and A. J. Weaver, 2004: Quantifying the influence of stratospheric cooling on satellite-derived tropospheric temperature trends. Nature, 432, doi:10.1038/nature03209.

    • Search Google Scholar
    • Export Citation
  • Hassler, B., , P. J. Young, , R. W. Portmann, , G. E. Bodeker, , J. S. Daniel, , K. H. Rosenlof, , and S. Solomon, 2013: Comparison of three vertically resolved ozone data sets: Climatology, trends and radiative forcings. Atmos. Chem. Phys., 13, 55335550, doi:10.5194/acp-13-5533-2013.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., , A. Jones, , and G. S. Jones, 2014: The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett., 15, 9296, doi:10.1002/asl2.471.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., , and J. M. Wallace, 2002: Influence of patterns of climate variability on the difference between satellite and surface temperature trends. J. Climate, 15, 24122428, doi:10.1175/1520-0442(2002)015<2412:IOPOCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and et al. , 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, 663–745. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter9.pdf.]

  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Huber, M., , and R. Knutti, 2014: Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci., 7, 651656, doi:10.1038/ngeo2228.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , and K. E. Trenberth, 1998: Difficulties in obtaining reliable temperature trends: Reconciling the surface and satellite Microwave Sounding Unit records. J. Climate, 11, 945967, doi:10.1175/1520-0442(1998)011<0945:DIORTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker, et al., Eds., Cambridge University Press, 1–29. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGIAR5_SPM_brochure_en.pdf.]

  • Johanson, C. M., , and Q. Fu, 2006: Robustness of tropospheric temperature trends from MSU channels 2 and 4. J. Climate, 19, 42344242, doi:10.1175/JCLI3866.1.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., , S. J. Hassol, , C. D. Miller, , and W. L. Murray, Eds., 2006: Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences. U.S. Climate Change Science Program and the Subcommittee on Global Change Research Synthesis and Assessment Product 1.1, 164 pp.

  • Karl, T. R., and et al. , 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. Caron, , and J. J. Hack, 2005: On using global climate model simulations to assess the accuracy of MSU retrieval methods for tropospheric warming trends. J. Climate, 18, 25332539, doi:10.1175/JCLI3492.1.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., , and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Lewandowsky, S., , J. S. Risbey, , and N. Oreskes, 2016: The “pause” in global warming: Turning a routine fluctuation into a problem for science. Bull. Amer. Meteor. Soc., 97, 723733, doi:10.1175/BAMS-D-14-00106.1.

    • Search Google Scholar
    • Export Citation
  • Lott, F. C., , P. A. Stott, , D. M. Mitchell, , N. Christidis, , N. P. Gillett, , L. Haimberger, , J. Perlwitz, , and P. W. Thorne, 2013: Models versus radiosondes in the free atmosphere: A new detection and attribution analysis of temperature. J. Geophys. Res., 118, 26092619, doi:10.1002/jgrd.50255.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., , and P. M. Forster, 2015: Forcing, feedback and internal variability in global temperature trends. Nature, 517, 565570, doi:10.1038/nature14117.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , and F. J. Wentz, 2005: The effect of diurnal correction on satellite-derived lower tropospheric temperature. Science, 309, 15481551, doi:10.1126/science.1114772.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , and F. J. Wentz, 2016: Sensitivity of satellite-derived tropospheric temperature trends to the diurnal cycle adjustment. J. Climate, 29, 36293646, doi:10.1175/JCLI-D-15-0744.1.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , M. C. Schabel, , and F. J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 36503664, doi:10.1175/1520-0442(2003)016<3650:AROTMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , B. D. Santer, , F. J. Wentz, , K. E. Taylor, , and M. Wehner, 2007: The relationship between temperature and precipitable water changes over tropical oceans. Geophys. Res. Lett., 34, L2470, doi:10.1029/2007GL031936.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , F. J. Wentz, , P. Thorne, , and D. Bernie, 2011: Assessing uncertainty in estimates of atmospheric temperature changes from MSU and AMSU using a Monte-Carlo estimation technique. J. Geophys. Res., 116, D08112, doi:10.1029/2010JD014954.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , J. T. Fasullo, , A. Hu, , and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , H. Teng, , and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Climate Change, 4, 898902, doi:10.1038/nclimate2357.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., , J. J. Kennedy, , N. A. Rayner, , and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2000: Reconciling Observations of Global Temperature Change. National Academy Press, 169 pp.

  • Neely, R. R., and et al. , 2013: Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys. Res. Lett., 40, 9991004, doi:10.1002/grl.50263.

    • Search Google Scholar
    • Export Citation
  • Pidcock, R., 2016: Analysis: How much did El Niño boost global temperature in 2015? [http://www.carbonbrief.org/analysis-how-much-did-el-nino-boost-global-temperature-in-2015.]

  • Po-Chedley, S., , and Q. Fu, 2012a: A bias in the midtropospheric channel warm target factor on the NOAA-9 Microwave Sounding Unit. J. Atmos. Oceanic Technol., 29, 646652, doi:10.1175/JTECH-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Po-Chedley, S., , and Q. Fu, 2012b: Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environ. Res. Lett., 7, 044018, doi:10.1088/1748-9326/7/4/044018.

    • Search Google Scholar
    • Export Citation
  • Po-Chedley, S., , T. J. Thorsen, , and Q. Fu, 2015: Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: Understanding tropical tropospheric trend discrepancies. J. Climate, 28, 22742290, doi:10.1175/JCLI-D-13-00767.1.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., , M. D. Schwarzkopf, , W. J. Randel, , B. D. Santer, , B. J. Soden, , and G. L. Stenchikov, 2006: Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311, 11381141, doi:10.1126/science.1122587.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., , S. Lewandowsky, , C. Langlais, , D. P. Monselesan, , T. J. O’Kane, , and N. Oreskes, 2014: Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Climate Change, 4, 835840, doi:10.1038/nclimate2310.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, doi:10.1029/1998RG000054.

  • Santer, B. D., , T. M. L. Wigley, , T. P. Barnett, , and E. Anyamba, 1995: Detection of climate change and attribution of causes. Climate Change 1995: The Science of Climate Change, J. T. Houghton, et al., Eds., Cambridge University Press, 407–443.

  • Santer, B. D., and et al. , 2000: Interpreting differential temperature trends at the surface and in the lower troposphere. Science, 287, 12271232, doi:10.1126/science.287.5456.1227.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28 03328 059, doi:10.1029/2000JD000189.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 15511556, doi:10.1126/science.1114867.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. Int. J. Climatol., 28, 17031722, doi:10.1002/joc.1756.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2011: Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res., 116, D22105, doi:10.1029/2011JD016263.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2013a: Human and natural influences on the changing thermal structure of the atmosphere. Proc. Natl. Acad. Sci. USA, 110, 17 23517 240, doi:10.1073/pnas.1305332110.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2013b: Identifying human influences on atmospheric temperature. Proc. Natl. Acad. Sci. USA, 110, 2633, doi:10.1073/pnas.1210514109.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2014: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185189, doi:10.1038/ngeo2098.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., , D. T. Shindell, , and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, doi:10.1038/ngeo2105.

  • Seidel, D. J., and et al. , 2016: Stratospheric temperature changes during the satellite era. J. Geophys. Res. Atmos., 121, 664681, doi:10.1002/2015JD024039.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and et al. , 2013: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 13, 29392974, doi:10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and et al. , 2016: Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936940, doi:10.1038/nclimate3058.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275316, doi:10.1029/1999RG900008.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , K. H. Rosenlof, , R. W. Portman, , J. S. Daniel, , S. M. Davis, , T. J. Sanford, , and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , J. S. Daniel, , R. R. Neely, , J.-P. Vernier, , E. G. Dutton, , and L. W. Thomason, 2011: The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866870, doi:10.1126/science.1206027.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , P. J. Young, , and B. Hassler, 2012: Uncertainties in the evolution of stratospheric ozone and implications for recent temperature changes in the tropical lower stratosphere. Geophys. Res. Lett., 39, L17706, doi:10.1029/2012GL052723.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , and J. R. Christy, 1992: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part II: A tropospheric retrieval and trends during 1979–1990. J. Climate, 5, 858866, doi:10.1175/1520-0442(1992)005<0858:PARVOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., , M. E. Mann, , and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, doi:10.1126/science.1257856.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., , and J. H. Carlson, 1979: Atmospheric lapse rate regimes and their parameterization. J. Atmos. Sci., 36, 415423, doi:10.1175/1520-0469(1979)036<0415:ALRRAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. M. Wallace, , P. D. Jones, , and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206141, doi:10.1175/2009JCLI3089.1.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., and et al. , 2007: Tropical vertical temperature trends: A real discrepancy? Geophys. Res. Lett., 34, L16702, doi:10.1029/2007GL029875.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., , J. R. Lanzante, , T. C. Peterson, , D. J. Seidel, , and K. P. Shine, 2011: Tropospheric temperature trends: History of an ongoing controversy. Wiley Interdiscip. Rev.: Climate Change, 2, 6688, doi:10.1002/wcc.80.

    • Search Google Scholar
    • Export Citation
  • Tollefson, J., 2016: 2015 breaks heat record. Nature, 529, 450.

  • Trenberth, K. E., 2015: Has there been a hiatus? Science, 349, 691692, doi:10.1126/science.aac9225.

  • Trenberth, K. E., , and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • U.S. Senate, 2015: Data or dogma? Promoting open inquiry in the debate over the magnitude of human impact on Earth’s climate. Archived webcast of hearing before the U.S. Senate Committee on Commerce, Science, and Transportation, Subcommittee on Space, Science, and Competitiveness, 8 December 2015. [Available online at http://www.commerce.senate.gov/public/index.cfm/2015/12/data-or-dogma-promoting-open-inquiry-in-the-debate-over-the-magnitude-of-human-impact-on-earth-s-climate.]

  • Vernier, J.-P., and et al. , 2011: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett., 38, L12807, doi:10.1029/2011GL047563.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , and M. Schabel, 1998: Effects of orbital decay on satellite-derived lower-tropospheric temperature trends. Nature, 394, 661664, doi:10.1038/29267.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414416, doi:10.1038/35000184.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., , C. M. Ammann, , B. D. Santer, , and S. C. B. Raper, 2005: The effect of climate sensitivity on the response to volcanic forcing. J. Geophys. Res., 110, D09107, doi:10.1029/2004JD005557.

    • Search Google Scholar
    • Export Citation
  • Young, P. J., , S. M. Davis, , B. Hassler, , S. Solomon, , and K. H. Rosenlof, 2014: Modeling the climate impact of Southern Hemisphere ozone depletion: The importance of the ozone data set. Geophys. Res. Lett., 41, 90339039, doi:10.1002/2014GL061738.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7, 17191736, doi:10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., , and W. Wang, 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res., 116, D23113, doi:10.1029/2011JD016205.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., , M. D. Goldberg, , Z. Cheng, , N. C. Grody, , J. T. Sullivan, , C. Cao, , and D. Tarpley, 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res., 111, D19114, doi:10.1029/2005JD006798.

    • Search Google Scholar
    • Export Citation
  • Zou, C.-Z., , M. Gao, , and M. Goldberg, 2009: Error structure and atmospheric temperature trends in observations from the Microwave Sounding Unit. J. Climate, 22, 16611681, doi:10.1175/2008JCLI2233.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 850 850 182
PDF Downloads 321 321 63

Comparing Tropospheric Warming in Climate Models and Satellite Data

View More View Less
  • 1 Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
  • | 2 Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 3 Remote Sensing Systems, Santa Rosa, California
  • | 4 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 5 Center for Satellite Applications and Research, NOAA/NESDIS, Camp Springs, Maryland
© Get Permissions
Restricted access

Abstract

Updated and improved satellite retrievals of the temperature of the mid-to-upper troposphere (TMT) are used to address key questions about the size and significance of TMT trends, agreement with model-derived TMT values, and whether models and satellite data show similar vertical profiles of warming. A recent study claimed that TMT trends over 1979 and 2015 are 3 times larger in climate models than in satellite data but did not correct for the contribution TMT trends receive from stratospheric cooling. Here, it is shown that the average ratio of modeled and observed TMT trends is sensitive to both satellite data uncertainties and model–data differences in stratospheric cooling. When the impact of lower-stratospheric cooling on TMT is accounted for, and when the most recent versions of satellite datasets are used, the previously claimed ratio of three between simulated and observed near-global TMT trends is reduced to approximately 1.7. Next, the validity of the statement that satellite data show no significant tropospheric warming over the last 18 years is assessed. This claim is not supported by the current analysis: in five out of six corrected satellite TMT records, significant global-scale tropospheric warming has occurred within the last 18 years. Finally, long-standing concerns are examined regarding discrepancies in modeled and observed vertical profiles of warming in the tropical atmosphere. It is shown that amplification of tropical warming between the lower and mid-to-upper troposphere is now in close agreement in the average of 37 climate models and in one updated satellite record.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0333.s1.

Corresponding author e-mail: Benjamin D. Santer, santer1@llnl.gov

Abstract

Updated and improved satellite retrievals of the temperature of the mid-to-upper troposphere (TMT) are used to address key questions about the size and significance of TMT trends, agreement with model-derived TMT values, and whether models and satellite data show similar vertical profiles of warming. A recent study claimed that TMT trends over 1979 and 2015 are 3 times larger in climate models than in satellite data but did not correct for the contribution TMT trends receive from stratospheric cooling. Here, it is shown that the average ratio of modeled and observed TMT trends is sensitive to both satellite data uncertainties and model–data differences in stratospheric cooling. When the impact of lower-stratospheric cooling on TMT is accounted for, and when the most recent versions of satellite datasets are used, the previously claimed ratio of three between simulated and observed near-global TMT trends is reduced to approximately 1.7. Next, the validity of the statement that satellite data show no significant tropospheric warming over the last 18 years is assessed. This claim is not supported by the current analysis: in five out of six corrected satellite TMT records, significant global-scale tropospheric warming has occurred within the last 18 years. Finally, long-standing concerns are examined regarding discrepancies in modeled and observed vertical profiles of warming in the tropical atmosphere. It is shown that amplification of tropical warming between the lower and mid-to-upper troposphere is now in close agreement in the average of 37 climate models and in one updated satellite record.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0333.s1.

Corresponding author e-mail: Benjamin D. Santer, santer1@llnl.gov

Supplementary Materials

    • Supplemental Materials (PDF 834.69 KB)
Save