• Austin, R., 2007: Level 2B Radar-only Cloud Water Content (2B-CWC-RO) Process Description Document, version 5.1. CloudSat Data Processing Center, 24 pp. [Available online at ftp://ftp.cira.colostate.edu/ftp/CloudSat/Docs/2B-CWC-RO_PDICD.P_R04.20071021.pdf.]

  • Austin, R., , A. J. Heymsfield, , and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Baker, B., , and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, doi:10.1175/JAM2398.1.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , and A. Korolev, 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14, 12241229, doi:10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, W., , T. L’Ecuyer, , and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and et al. , 2015: Clouds, circulation, and climate sensitivity. Nat. Geosci., 8, 261268, doi:10.1038/ngeo2398.

  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571658, doi:10.1017/CBO9781107415324.016.

  • Brown, P. R. A., , and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , and B. J. Soden, 2005: The sensitivity of the tropical-mean radiation budget. J. Climate, 18, 31893203, doi:10.1175/JCLI3456.1.

    • Search Google Scholar
    • Export Citation
  • Collis, S., , A. Protat, , P. T. May, , and C. Williams, 2013: Statistics of storm updraft velocities from TWPICE including verification with profiling measurements. J. Appl. Meteor. Climatol., 52, 19091922, doi:10.1175/JAMC-D-12-0230.1.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and et al. , 2007: An intercomparison of microphysical retrieval algorithms for upper-tropospheric ice clouds. Bull. Amer. Meteor. Soc., 88, 191204, doi:10.1175/BAMS-88-2-191.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., , A. Protat, , J. Testud, , D. Bouniol, , A. J. Heymsfield, , A. Bansemer, , P. R. A. Brown, , and R. M. Forbes, 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , M.-S. Yao, , W. Kovari, , and K. K.-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9, 270304, doi:10.1175/1520-0442(1996)009<0270:APCWPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , W. Kovari, , M.-S. Yao, , and J. Jonas, 2005: Cumulus microphysics and climate sensitivity. J. Climate, 18, 23762387, doi:10.1175/JCLI3413.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , M.-S. Yao, , and J. Jonas, 2007: Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, LI6703, doi:10.1029/2007GL030525.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , J. Wu, , A. Wolf, , Y. Chen, , M.-S. Yao, , and D. Kim, 2015: Constraints on cumulus parameterization from simulations of observed MJO events. J. Climate, 28, 64196442, doi:10.1175/JCLI-D-14-00832.1.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., , C. J. Seman, , and R. S. Hemler, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463, doi:10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and et al. , 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782, doi:10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., , and G. L. Stephens, 1995: Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part II: Remote sensing of ice clouds. J. Atmos. Sci., 52, 20582072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., , J. R. Wang, , P. E. Racette, , G. M. Heymsfield, , and L. Li, 2005: Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE. J. Appl. Meteor., 44, 839859, doi:10.1175/JAM2250.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544560, doi:10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fontaine, E., , A. Schwarzenboeck, , J. Delanoë, , W. Wobrock, , D. Leroy, , R. Dupuy, , C. Gourbeyre, , and A. Protat, 2014: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos. Chem. Phys., 14, 11 36711 392, doi:10.5194/acp-14-11367-2014.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., , A. S. Ackerman, , A. Grandin, , F. Dezitter, , M. Weber, , J. W. Strapp, , A. V. Korolev, , and C. R. Williams, 2015: High ice water content at low radar reflectivity near deep convection—Part I: Consistency of in situ and remote-sensing observations with stratiform rain column simulations. Atmos. Chem. Phys., 15, 11 71311 728, doi:10.5194/acp-15-11713-2015.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., , S. Collis, , J. Straka, , A. Protat, , C. Williams, , and S. Krueger, 2013: A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma. J. Appl. Meteor. Climatol., 52, 22782295, doi:10.1175/JAMC-D-12-0185.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127, 5372, doi:10.1002/qj.49712757104.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., 2003: Measurement in the atmosphere. Handbook of Weather, Climate, and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements, T. D. Potter and B. R. Colman, Eds., Wiley-Interscience, 711–720, doi:10.1002/0471721603.

  • Hartmann, D. L., , M. E. Ockertbell, , and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance—Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., , T. S. L’Ecuyer, , G. L. Stephens, , S. D. Miller, , C. Mitrescu, , N. B. Wood, , and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., , T. L’Ecuyer, , D. Vane, , G. Stephens, , and D. Reinke, 2013: Level 2-C precipitation column algorithm product process description and interface control document. 17 pp. [Available online at http://www.cloudsat.cira.colostate.edu/data-products/level-2c/2c-precip-column.]

  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/2007GL030951.

  • Heymsfield, A. J., , A. Bansemer, , P. R. Field, , S. L. Durden, , J. L. Stith, , J. E. Dye, , W. Hall, , and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , C. Schmitt, , A. Bansemer, , and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , C. Schmitt, , and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , L. Tian, , A. J. Heymsfield, , L. Li, , and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., , and G. M. McFarquhar, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D Cloud Probe. J. Atmos. Oceanic Technol., 31, 21312144, doi:10.1175/JTECH-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and et al. , 2012: The dependence of ice microphysics on aerosol concentration in Arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., , G. M. McFarquhar, , A. M. Fridlind, , and R. Atlas, 2015: The dependence of cirrus gamma size distributions expressed as volumes in N0-λ-μ phase space and bulk cloud properties on environmental conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS). J. Geophys. Res. Atmos., 120, 10 35110 377, doi:10.1002/2015JD023492.

    • Search Google Scholar
    • Export Citation
  • Jensen, M., and et al. , 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 1667–1686, doi:10.1175/BAMS-D-14-00228.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and et al. , 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res., 117, D14105, doi:10.1029/2011JD017237.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , A. D. Del Genio, , and M.-S. Yao, 2013: Moist convection scheme in Model E2. 9 pp. [Available online at https://arxiv.org/abs/1312.7496.]

  • Korolev, A., , E. Emery, , J. W. Strapp, , S. G. Cober, , G. A. Isaac, , M. Wasey, , and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , E. Emery, , and K. Creelman, 2013: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, doi:10.1175/JTECH-D-12-00142.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , D. O’Connor, , P. Zmarzly, , K. Weaver, , B. Baker, , Q. Mo, , and H. Jonsson, 2006: The 2D-S (Stereo) Probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , E. Jensen, , D. L. Mitchell, , B. Baker, , Q. Mo, , and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.

    • Search Google Scholar
    • Export Citation
  • Leroy, D., and et al. , 2015: HAIC/HIWC Field Campaign—Specific findings on PSD microphysics in high IWC regions from in situ measurements: Median mass diameters, particle size distribution characteristics and ice crystal shapes. SAE Tech. Paper 2015-01-2087, 8 pp., doi:10.4271/2015-01-2087.

  • Locatelli, J. D., , and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., , and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper‐tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563, doi:10.1175/3222.1.

    • Search Google Scholar
    • Export Citation
  • Mace, J., , E. Jensen, , G. McFarquhar, , J. Comstock, , T. Ackerman, , D. Mitchell, , X. Liu, , and T. Garrett, 2009: SPARTICUS—Small Particles in Cirrus Science and Operations Plan. ARM Program, 15 pp. [Available online at https://www.arm.gov/publications/programdocs/doe-sc-arm-10-003.pdf.]

  • Marshall, J. S., , and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., , and B. Stevens, 2015: Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat. Geosci., 8, 346351, doi:10.1038/ngeo2414.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and et al. , 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, doi:10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , M. S. Timlin, , R. M. Rauber, , B. F. Jewett, , J. A. Grim, , and D. P. Jorgensen, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, doi:10.1175/MWR3444.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , T. Hsieh, , M. Freer, , J. Mascio, , and B. F. Jewett, 2015: The characterization of ice hydrometeor gamma size distributions as volumes in N0-μ-λ phase space: Implications for microphysical process modeling. J. Atmos. Sci., 72, 892909, doi:10.1175/JAS-D-14-0011.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , S. Mishra, , and R. P. Lawson, 2011: Representing the ice fall speed in climate models: Results from Tropical Composition, Cloud and Climate Coupling (TC4) and the Indirect and Semi‐Direct Aerosol Campaign (ISDAC). J. Geophys. Res., 116, D00T03, doi:10.1029/2010JD015433.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., , T. P. Ackerman, , J. M. Comstock, , G. S. Diskin, , S. M. Evans, , R. P. Lawson, , and R. T. Marchand, 2014: Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus. J. Geophys. Res. Atmos., 119, 39763996, doi:10.1002/2013JD020035.

    • Search Google Scholar
    • Export Citation
  • Protat, A., , J. Delanoë, , E. J. O’Connor, , and T. S. L’Ecuyer, 2010: The evaluation of CloudSat and CALIPSO ice microphysical products using ground-based cloud radar and lidar observations. J. Atmos. Oceanic Technol., 27, 793810, doi:10.1175/2009JTECHA1397.1.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 2000: On the “tuning” of autoconversion parameterizations in climate models. J. Geophys. Res., 105, 15 49515 507, doi:10.1029/2000JD900129.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., , C. Piani, , W. J. Ingram, , D. A. Stone, , and M. R. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190, doi:10.1007/s00382-007-0280-7.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and et al. , 2014: Configuration and assessment of the GISS Model E2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scott, S. G., , T. P. Bui, , K. R. Chan, , and S. W. Bowen, 1990: The meteorological measurement system on the NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 7, 525540, doi:10.1175/1520-0426(1990)007<0525:TMMSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, X., , and G. J. Zhang, 2011: Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests. J. Geophys. Res., 116, D02201, doi:10.1029/2010JD014833.

    • Search Google Scholar
    • Export Citation
  • Stanfield, R. E., , X. Dong, , B. Xi, , A. Kennedy, , A. D. Del Genio, , P. Minnis, , and J. H. Jiang, 2014: Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations. J. Climate, 27, 41894208, doi:10.1175/JCLI-D-13-00558.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Stephens, G. L., and et al. , 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Storer, R. L., , G. J. Zhang, , and X. Song, 2015: Effects of convective microphysics parameterization on large-scale cloud hydrological and radiative budget in tropical and midlatitude convective regions. J. Climate, 28, 92779297, doi:10.1175/JCLI-D-15-0064.1.

    • Search Google Scholar
    • Export Citation
  • Su, H., and et al. , 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using “A-Train” satellite observations and reanalysis data. J. Geophys. Res. Atmos., 118, 27622780, doi:10.1029/2012JD018575.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , S. Oury, , R. A. Black, , P. Amayenc, , and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor. Climatol., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and et al. , 2010: Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and et al. , 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and et al. , 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations:1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, doi:10.1002/2013JD021371.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., and et al. , 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Waters, J. W., and et al. , 2006: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44, 1075–1092.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., , D. E. Waliser, , J.-L. Li, , R. T. Austin, , G. L. Stephens, , and D. G. Vane, 2008: Evaluating CloudSat ice water content retrievals using a cloud-resolving model: Sensitivities to frozen particle properties. J. Geophys. Res., 113, D00A11, doi:10.1029/2008JD009941.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and et al. , 2008: Validation of the Aura MLS cloud ice water content measurements. J. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and et al. , 2009: Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J. Geophys. Res., 114, D00A24, doi:10.1029/2008JD009946.

    • Search Google Scholar
    • Export Citation
  • Wu, W., , and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, doi:10.1175/JTECH-D-15-0177.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , S. A. Klein, , and D. L. Hartmann, 2012a: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, doi:10.1175/JCLI-D-11-00248.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , S. A. Klein, , and D. L. Hartmann, 2012b: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754, doi:10.1175/JCLI-D-11-00249.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., , X. Liu, , M. Wang, , J. M. Comstock, , D. L. Mitchell, , S. Mishra, , and G. G. Mace, 2013: Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmos. Chem. Phys., 13, 49634982, doi:10.5194/acp-13-4963-2013.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., 2014: An investigation of the connections among convection, clouds, and climate sensitivity in a global climate model. J. Climate, 27, 18451862, doi:10.1175/JCLI-D-13-00145.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and et al. , 2009: The Saharan air layer and the fate of African easterly waves—NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90, 11371156, doi:10.1175/2009BAMS2728.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 25
PDF Downloads 85 85 11

An Improved Convective Ice Parameterization for the NASA GISS Global Climate Model and Impacts on Cloud Ice Simulation

View More View Less
  • 1 Department of Applied Physics and Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York
  • | 2 NASA Goddard Institute for Space Studies, New York, New York
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 4 NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

Partitioning of convective ice into precipitating and detrained condensate presents a challenge for GCMs since partitioning depends on the strength and microphysics of the convective updraft. It is an important issue because detrainment of ice from updrafts influences the development of stratiform anvils, impacts radiation, and can affect GCM climate sensitivity. Recent studies have shown that the CMIP5 configurations of the Goddard Institute for Space Studies (GISS) GCM simulated upper-tropospheric ice water content (IWC) that exceeded an estimated upper bound by a factor of 2. Partly in response to this bias, a new GCM parameterization of convective cloud ice has been developed that incorporates new ice particle fall speeds and convective outflow particle size distributions (PSDs) from the NASA African Monsoon Multidisciplinary Analyses (NAMMA), NASA Tropical Composition, Cloud and Climate Coupling (TC4), DOE ARM–NASA Midlatitude Continental Convective Clouds Experiment (MC3E), and DOE ARM Small Particles in Cirrus (SPARTICUS) field campaigns. The new parameterization assumes a normalized gamma PSD with two novel developments: no explicit assumption for particle habit in the calculation of mass distributions, and a formulation for translating ice particle fall speeds as a function of maximum diameter into fall speeds as a function of melted-equivalent diameter. Two parameters (particle volume– and projected area–weighted equivalent diameter) are diagnosed as a function of temperature and IWC in the convective plume, and these parameters constrain the shape and scale of the normalized gamma PSD. The diagnosed fall speeds and PSDs are combined with the GCM’s parameterized convective updraft vertical velocity to partition convective updraft condensate into precipitating and detrained components. A 5-yr prescribed sea surface temperature GCM simulation shows a 30%–50% decrease in upper-tropospheric deep convective IWC, bringing the tropical and global mean ice water path into closer agreement with CloudSat best estimates.

Corresponding author address: Gregory S. Elsaesser, Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: gregory.elsaesser@columbia.edu

Abstract

Partitioning of convective ice into precipitating and detrained condensate presents a challenge for GCMs since partitioning depends on the strength and microphysics of the convective updraft. It is an important issue because detrainment of ice from updrafts influences the development of stratiform anvils, impacts radiation, and can affect GCM climate sensitivity. Recent studies have shown that the CMIP5 configurations of the Goddard Institute for Space Studies (GISS) GCM simulated upper-tropospheric ice water content (IWC) that exceeded an estimated upper bound by a factor of 2. Partly in response to this bias, a new GCM parameterization of convective cloud ice has been developed that incorporates new ice particle fall speeds and convective outflow particle size distributions (PSDs) from the NASA African Monsoon Multidisciplinary Analyses (NAMMA), NASA Tropical Composition, Cloud and Climate Coupling (TC4), DOE ARM–NASA Midlatitude Continental Convective Clouds Experiment (MC3E), and DOE ARM Small Particles in Cirrus (SPARTICUS) field campaigns. The new parameterization assumes a normalized gamma PSD with two novel developments: no explicit assumption for particle habit in the calculation of mass distributions, and a formulation for translating ice particle fall speeds as a function of maximum diameter into fall speeds as a function of melted-equivalent diameter. Two parameters (particle volume– and projected area–weighted equivalent diameter) are diagnosed as a function of temperature and IWC in the convective plume, and these parameters constrain the shape and scale of the normalized gamma PSD. The diagnosed fall speeds and PSDs are combined with the GCM’s parameterized convective updraft vertical velocity to partition convective updraft condensate into precipitating and detrained components. A 5-yr prescribed sea surface temperature GCM simulation shows a 30%–50% decrease in upper-tropospheric deep convective IWC, bringing the tropical and global mean ice water path into closer agreement with CloudSat best estimates.

Corresponding author address: Gregory S. Elsaesser, Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: gregory.elsaesser@columbia.edu
Save