• Adler, R. F., and et al. , 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere ocean model. J. Atmos. Sci., 45, 28892919, doi:10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., , E. Guilyardi, , J. Leloup, , M. Lengaigne, , and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Cao, J., , R. Lu, , J. Hu, , and H. Wang, 2013: Spring Indian Ocean-western Pacific SST contrast and the East Asian summer rainfall anomaly. Adv. Atmos. Sci., 30, 15601568, doi:10.1007/s00376-013-2298-6.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., , and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., , Y. S. Zhang, , and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, W., , J.-K. Park, , B. Dong, , R. Lu, , and W.-S. Jung, 2012: The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res., 117, D12111, doi:10.1029/2011JD017385.

    • Search Google Scholar
    • Export Citation
  • Chen, X. L., , and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res. Atmos., 119, 13 04313 066, doi:10.1002/2014JD022064.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , J. Y. Tu, , and J. Y. Yu, 2003: Interannual variability of the western North Pacific summer monsoon: Differences between ENSO and non-ENSO years. J. Climate, 16, 22752287, doi:10.1175/2761.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , L. F. Huang, , J. Y. Tu, , L. S. Tseng, , and Y. C. Hsueh, 2009: El Niño impacts on precipitation in the western North Pacific–East Asian sector. J. Climate, 22, 20392057, doi:10.1175/2008JCLI2649.1.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , S.-P. Xie, , J.-J. Luo, , J. Hafner, , S. Behera, , Y. Masumoto, , and T. Yamagata, 2011: Predictability of northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607621, doi:10.1007/s00382-009-0686-5.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , A. Parekh, , C. Gnanaseelan, , and P. Sreenivas, 2014: Inter-decadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: Special emphasis on decay phase of El Niño. Global Planet. Change, 112, 3340, doi:10.1016/j.gloplacha.2013.11.003.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , A. Parekh, , R. Kakatkar, , C. Gnanaseelan, , G. Srinivas, , P. Singh, , and M. K. Roxy, 2016: Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall. Climate Dyn., 47, 831844, doi:10.1007/s00382-015-2874-9.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gong, H., , L. Wang, , W. Chen, , D. Nath, , G. Huang, , and W. Tao, 2015: Diverse influences of ENSO on the East Asian–western Pacific winter climate tied to different ENSO properties in CMIP5 models. J. Climate, 28, 21872202, doi:10.1175/JCLI-D-14-00405.1.

    • Search Google Scholar
    • Export Citation
  • He, C., , and T. J. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J. Climate, 28, 365380, doi:10.1175/JCLI-D-13-00494.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , A. Kumar, , and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, K., , G. Huang, , X.-T. Zheng, , S.-P. Xie, , X. Qu, , Y. Du, , and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, doi:10.1175/JCLI-D-13-00268.1.

    • Search Google Scholar
    • Export Citation
  • Hu, W., , and R. Wu, 2015: Relationship between South China Sea precipitation variability and tropical Indo-Pacific SST anomalies in IPCC CMIP5 models during spring-to-summer transition. Adv. Atmos. Sci., 32, 13031318, doi:10.1007/s00376-015-4250-4.

    • Search Google Scholar
    • Export Citation
  • Huang, G., , K. Hu, , and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304, doi:10.1175/2010JCLI3577.1.

    • Search Google Scholar
    • Export Citation
  • Huang, R., , and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, doi:10.1007/BF02656915.

    • Search Google Scholar
    • Export Citation
  • Huang, R., , R. Zhang, , and B. Yan, 2001: Dynamical effect of the zonal wind anomalies over the tropical western Pacific on ENSO cycles. Sci. China, 44D, 10891098, doi:10.1007/BF02906865.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., , and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, doi:10.1029/2012GL052006.

  • Lau, N. C., , and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 42874309, doi:10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, G., , and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, doi:10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , Y. Du, , H. Xu, , and B. Ren, 2015: An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J. Climate, 28, 76307640, doi:10.1175/JCLI-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., , S.-P. Xie, , Y. Du, , and Y. Luo, 2016: Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: The warming pattern in CMIP5 multi-model ensemble. Climate Dyn., doi:10.1007/s00382-016-3043-5, in press.

    • Search Google Scholar
    • Export Citation
  • Lin, Z. D., , and R. Y. Lu, 2009: The ENSO’s effect on eastern China rainfall in the following early summer. Adv. Atmos. Sci., 26, 333342, doi:10.1007/s00376-009-0333-4.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Monterey, G., , and S. Levitus, 1997: Seasonal variability of mixed layer depth for the World Ocean. NOAA Atlas NESDIS 14, 102 pp.

  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Song, F. F., , and T. J. Zhou, 2014: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? J. Climate, 27, 87618777, doi:10.1175/JCLI-D-14-00396.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W., , G. Huang, , K. Hu, , H. Gong, , G. Wen, , and L. Liu, 2016: A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models. Climate Dyn., 46, 205226, doi:10.1007/s00382-015-2579-0.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Terao, T., , and T. Kubota, 2005: East-west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon. Geophys. Res. Lett., 32, L15706, doi:10.1029/2005GL023010.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , J. M. Wallace, , and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, doi:10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. G. Wu, , and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. G. Wu, , and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. G. Wu, , and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , T. Li, , and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, doi:10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R. G., , Z. Z. Hu, , and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, doi:10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R. G., , G. Huang, , Z. C. Du, , and K. M. Hu, 2014: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., 43, 193207, doi:10.1007/s00382-013-1820-y.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , K. Hu, , J. Hafner, , H. Tokinaga, , Y. Du, , G. Huang, , and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , Y. Du, , G. Huang, , X.-T. Zheng, , H. Tokinaga, , K. Hu, , and Q. Liu, 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, doi:10.1175/2010JCLI3429.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , Y. Kosaka, , Y. Du, , K. Hu, , J. S. Chowdary, , and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, doi:10.1007/s00376-015-5192-6.

    • Search Google Scholar
    • Export Citation
  • Yang, J. L., , Q. Y. Liu, , S. P. Xie, , Z. Y. Liu, , and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yang, J. L., , Q. Y. Liu, , and Z. Y. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 58895902, doi:10.1175/2010JCLI2962.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., , and R. Huang, 1998: Dynamical effect of zonal wind stresses over the tropical Pacific on the occurring and vanishing of El Niño event: Part I. Diagnostics and theoretical analyses. Chin. J. Atmos. Sci., 22, 587599.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., , and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn. J. Meteor. Soc. Japan, 80, 213227, doi:10.2151/jmsj.80.213.

    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., , A. Sumi, , and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, doi:10.1007/BF02973084.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , and D. Z. Sun, 2014: ENSO asymmetry in CMIP5 models. J. Climate, 27, 40704093, doi:10.1175/JCLI-D-13-00454.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 7
PDF Downloads 54 54 5

Diverse Relationship between ENSO and the Northwest Pacific Summer Climate among CMIP5 Models: Dependence on the ENSO Decay Pace

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 Joint Center for Global Change Studies, Beijing, China
  • | 3 Shenzhen Key Laboratory of Severe Weather in South China, Shenzhen, China
  • | 4 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 5 University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

The impacts of El Niño–Southern Oscillation (ENSO) on the northwest Pacific (NWP) climate during ENSO decay summers are investigated based on the outputs of 37 coupled general circulation models (CGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Large intermodel spread exists in the 37 state-of-the-art CGCMs in simulating the ENSO–NWP relationship. Eight high-skill and eight low-skill models are selected to explore how the bias arises. By comparing the results among high-skill models, low-skill models, and observations, the simulation skill of the ENSO–NWP relationship largely depends on whether the model can reasonably reproduce the ENSO decay pace. Warm SST anomaly bias in the equatorial western Pacific (EWP) is found to persist into the ENSO decay summer in the low-skill models, obstructing the formation of an anomalous anticyclone in the NWP. Further analysis shows that the warm EWP SST anomaly bias is possibly related to the excessive westward extension of cold tongue in these models, which increases climatological zonal SST gradient in the EWP. Under westerly wind anomalies, the larger climatological zonal SST gradient could lead to warmer zonal advections in the low-skill models than that in the high-skill models, which could lead to warm EWP SST anomaly bias in the low-skill models. And the warm EWP SST anomaly bias could strengthen westerly wind anomalies over the western Pacific by triggering convection and atmospheric Rossby waves, which, in turn, could maintain the warm SST anomaly bias in the EWP.

Corresponding author address: Gang Huang, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Hua Yan Li, Beijing 100029, China. E-mail: hg@mail.iap.ac.cn

Abstract

The impacts of El Niño–Southern Oscillation (ENSO) on the northwest Pacific (NWP) climate during ENSO decay summers are investigated based on the outputs of 37 coupled general circulation models (CGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Large intermodel spread exists in the 37 state-of-the-art CGCMs in simulating the ENSO–NWP relationship. Eight high-skill and eight low-skill models are selected to explore how the bias arises. By comparing the results among high-skill models, low-skill models, and observations, the simulation skill of the ENSO–NWP relationship largely depends on whether the model can reasonably reproduce the ENSO decay pace. Warm SST anomaly bias in the equatorial western Pacific (EWP) is found to persist into the ENSO decay summer in the low-skill models, obstructing the formation of an anomalous anticyclone in the NWP. Further analysis shows that the warm EWP SST anomaly bias is possibly related to the excessive westward extension of cold tongue in these models, which increases climatological zonal SST gradient in the EWP. Under westerly wind anomalies, the larger climatological zonal SST gradient could lead to warmer zonal advections in the low-skill models than that in the high-skill models, which could lead to warm EWP SST anomaly bias in the low-skill models. And the warm EWP SST anomaly bias could strengthen westerly wind anomalies over the western Pacific by triggering convection and atmospheric Rossby waves, which, in turn, could maintain the warm SST anomaly bias in the EWP.

Corresponding author address: Gang Huang, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, 40 Hua Yan Li, Beijing 100029, China. E-mail: hg@mail.iap.ac.cn
Save