• Abaurrea, J., , and J. Asín, 2005: Forecasting local daily precipitation patterns in a climate change scenario. Climate Res., 28, 183197, doi:10.3354/cr028183.

    • Search Google Scholar
    • Export Citation
  • Beersma, J. J., , and T. A. Buishand, 2003: Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Climate Res., 25, 121133, doi:10.3354/cr025121.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2010: Downscaling precipitation extremes. Theor. Appl. Climatol., 100, 121, doi:10.1007/s00704-009-0158-1.

  • Boberg, F., , and J. H. Christensen, 2012: Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat. Climate Change, 2, 433436, doi:10.1038/nclimate1454.

    • Search Google Scholar
    • Export Citation
  • Brands, S., , S. Herrera, , D. San-Martin, , and J. M. Gutiérrez, 2011a: Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Climate Res., 48, 145161, doi:10.3354/cr00995.

    • Search Google Scholar
    • Export Citation
  • Brands, S., , J. J. Taboada, , A. S. Cofiño, , T. Sauter, , and C. Schneider, 2011b: Statistical downscaling of daily temperatures in the NW Iberian Peninsula from global climate models: Validation and future scenarios. Climate Res., 48, 163176, doi:10.3354/cr00906.

    • Search Google Scholar
    • Export Citation
  • Brands, S., , J. M. Gutiérrez, , S. Herrera, , and A. S. Cofiño, 2012: On the use of reanalysis data for downscaling. J. Climate, 25, 25172526, doi:10.1175/JCLI-D-11-00251.1.

    • Search Google Scholar
    • Export Citation
  • Brands, S., , S. Herrera, , J. Fernández, , and J. M. Gutiérrez, 2013: How well do CMIP5 Earth system models simulate present climate conditions in Europe and Africa? Climate Dyn., 41, 803817, doi:10.1007/s00382-013-1742-8.

    • Search Google Scholar
    • Export Citation
  • Brandsma, T., , and T. A. Buishand, 1997: Statistical linkage of daily precipitation in Switzerland to atmospheric circulation and temperature. J. Hydrol., 198, 98123, doi:10.1016/S0022-1694(96)03326-4.

    • Search Google Scholar
    • Export Citation
  • Chandler, R. E., , and H. S. Wheater, 2002: Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland. Water Resour. Res., 38, 1192, doi:10.1029/2001WR000906.

    • Search Google Scholar
    • Export Citation
  • Charles, S. P., , B. C. Bates, , P. H. Whetton, , and J. P. Hughes, 1999: Validation of downscaling models for changed climate conditions: Case study of southwestern Australia. Climate Res., 12, 114, doi:10.3354/cr012001.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. S., , G. Li, , Q. Li, , and H. Auld, 2008: Statistical downscaling of hourly and daily climate scenarios for various meteorological variables in south-central Canada. Theor. Appl. Climatol., 91, 129147, doi:10.1007/s00704-007-0302-8.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. S., , G. Li, , Q. Li, , and H. Auld, 2011: A synoptic weather-typing approach to project future daily rainfall and extremes at local scale in Ontario, Canada. J. Climate, 24, 36673685, doi:10.1175/2011JCLI3764.1.

    • Search Google Scholar
    • Export Citation
  • Coe, R., , and R. D. Stern, 1982: Fitting models to daily rainfall data. J. Appl. Meteor., 21, 10241031, doi:10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., , H. von Storch, , J. Waszkewitz, , and E. Zorita, 1996: Estimates of climate change in southern Europe derived from dynamical climate model output. Climate Res., 7, 129149, doi:10.3354/cr007129.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., and et al. , 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81, 5370, doi:10.1007/s10584-006-9228-x.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., , S. Somot, , E. Sanchez-Gomez, , C. M. Goodess, , D. Jacob, , G. Lenderink, , and O. B. Christensen, 2012: The spread amongst ENSEMBLES regional scenarios: Regional climate models, driving general circulation models and interannual variability. Climate Dyn., 38, 951964, doi:10.1007/s00382-011-1053-x.

    • Search Google Scholar
    • Export Citation
  • Dibike, Y. B., , and P. Coulibaly, 2005: Hydrologic impact of climate change in the Saguenay watershed: Comparison of downscaling methods and hydrologic models. J. Hydrol., 307, 145163, doi:10.1016/j.jhydrol.2004.10.012.

    • Search Google Scholar
    • Export Citation
  • Eden, J. M., , M. Widmann, , D. Grawe, , and S. Rast, 2012: Skill, correction, and downscaling of GCM-simulated precipitation. J. Climate, 25, 39703984, doi:10.1175/JCLI-D-11-00254.1.

    • Search Google Scholar
    • Export Citation
  • Enke, W., , and A. Spegat, 1997: Downscaling climate model outputs into local and regional weather elements by classification and regression. Climate Res., 8, 195207, doi:10.3354/cr008195.

    • Search Google Scholar
    • Export Citation
  • Fealy, R., , and J. Sweeney, 2007: Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach. Int. J. Climatol., 27, 20832094, doi:10.1002/joc.1506.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and L. Piero, 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63, 90104, doi:10.1016/j.gloplacha.2007.09.005.

    • Search Google Scholar
    • Export Citation
  • Goodess, C. M., , and J. P. Palutikof, 1998: Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int. J. Climatol., 18, 10511083, doi:10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1.

    • Search Google Scholar
    • Export Citation
  • Gutiérrez, J. M., , A. S. Cofiño, , R. Cano, , and M. A. Rodríguez, 2004: Clustering methods for statistical downscaling in short-range weather forecasts. Mon. Wea. Rev., 132, 21692183, doi:10.1175/1520-0493(2004)132<2169:CMFSDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gutiérrez, J. M., , D. San-Martín, , S. Brands, , R. Manzanas, , and S. Herrera, 2013: Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Climate, 26, 171188, doi:10.1175/JCLI-D-11-00687.1.

    • Search Google Scholar
    • Export Citation
  • Hanel, M., , and T. A. Buishand, 2015: Assessment of the sources of variation in changes of precipitation characteristics over the Rhine basin using a linear mixed-effects model. J. Climate, 28, 69036919, doi:10.1175/JCLI-D-14-00775.1.

    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., , C. Achberger, , R. E. Benestad, , D. Chen, , and E. J. Forland, 2005: Statistical downscaling of climate scenarios over Scandinavia. Climate Res., 29, 255268, doi:10.3354/cr029255.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., , N. Hofstra, , A. M. G. Klein Tank, , E. J. Klok, , P. D. Jones, , and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., , L. Fita, , J. Fernández, , and J. M. Gutiérrez, 2010: Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res., 115, D21117, doi:10.1029/2010JD013936.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., , J. M. Gutiérrez, , R. Ancell, , M. R. Pons, , M. D. Frías, , and J. Fernández, 2012: Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol., 32, 7485, doi:10.1002/joc.2256.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., , and J. Jacobeit, 2008: Assessments of Mediterranean precipitation changes for the 21st century using statistical downscaling techniques. Int. J. Climatol., 28, 10251045, doi:10.1002/joc.1597.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., , and J. Jacobeit, 2013: A novel approach to statistical downscaling considering nonstationarities: Application to daily precipitation in the Mediterranean area. J. Geophys. Res. Atmos., 118, 520533, doi:10.1002/jgrd.50112.

    • Search Google Scholar
    • Export Citation
  • Hertig, E., , S. Seubert, , A. Paxian, , G. Vogt, , H. Paeth, , and J. Jacobeit, 2013: Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: Statistical assessments for the Mediterranean area. Theor. Appl. Climatol., 111, 120, doi:10.1007/s00704-012-0639-5.

    • Search Google Scholar
    • Export Citation
  • Hingray, B., , and M. Said, 2014: Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate projections. J. Climate, 27, 67796798, doi:10.1175/JCLI-D-13-00629.1.

    • Search Google Scholar
    • Export Citation
  • Imbert, A., , and R. E. Benestad, 2005: An improvement of analog model strategy for more reliable local climate change scenarios. Theor. Appl. Climatol., 82, 245255, doi:10.1007/s00704-005-0133-4.

    • Search Google Scholar
    • Export Citation
  • Jacobeit, J., 2010: Classifications in climate research. Phys. Chem. Earth, 35, 411421, doi:10.1016/j.pce.2009.11.010.

  • Jolliffe, I. T., , and D. B. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd ed. Wiley and Sons, 292 pp.

  • Llasat, M. C., 2009: High magnitude storms and floods. The Physical Geography of the Mediterranean, J. Woodward, Ed., Oxford University Press, 513–540.

  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, doi:10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, doi:10.1029/2012GL051210.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and et al. , 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Moron, V., , A. W. Robertson, , M. N. Ward, , and O. Ndiaye, 2008: Weather types and rainfall over Senegal. Part II: Downscaling of GCM simulations. J. Climate, 21, 288307, doi:10.1175/2007JCLI1624.1.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., , and R. W. M. Wedderburn, 1972: Generalized linear models. J. Roy. Stat. Soc., 135A, 370384, doi:10.2307/2344614.

  • Philipp, A., and et al. , 2010: Cost733cat—A database of weather and circulation type classifications. Phys. Chem. Earth, 35, 360373, doi:10.1016/j.pce.2009.12.010.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Pryor, S. C., , J. T. Schoof, , and R. J. Barthelmie, 2005: Climate change impacts on wind speeds and wind energy density in northern Europe: Empirical downscaling of multiple AOGCMs. Climate Res., 29, 183198, doi:10.3354/cr029183.

    • Search Google Scholar
    • Export Citation
  • Reichert, B. K., , L. Bengtsson, , and O. Akesson, 1999: A statistical modeling approach for the simulation of local paleoclimatic proxy records using general circulation model output. J. Geophys. Res., 104, 19 07119 083, doi:10.1029/1999JD900264.

    • Search Google Scholar
    • Export Citation
  • Ruosteenoja, K., , and P. Räisänen, 2013: Seasonal changes in solar radiation and relative humidity in Europe in response to global warming. J. Climate, 26, 24672481, doi:10.1175/JCLI-D-12-00007.1.

    • Search Google Scholar
    • Export Citation
  • Sauter, T., , and V. Venema, 2011: Natural three-dimensional predictor domains for statistical precipitation downscaling. J. Climate, 24, 61326145, doi:10.1175/2011JCLI4155.1.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., , F. Wetterhall, , and J. Seibert, 2011: Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dyn., 37, 20872105, doi:10.1007/s00382-010-0979-8.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., , and B. J. McAvaney, 2001: An analogue-based method to downscale surface air temperature: Application for Australia. Climate Dyn., 17, 947963, doi:10.1007/s003820100156.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., , and D. A. Jones, 2008: Future projections of winter rainfall in southeast Australia using a statistical downscaling technique. Climatic Change, 86, 165187, doi:10.1007/s10584-007-9279-7.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., , A. Dufour, , and B. McAvaney, 2003: An estimate of future climate change for western France using a statistical downscaling technique. Climate Dyn., 20, 807823, doi:10.1007/s00382-002-0298-9.

    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., , and J. P. Palutikof, 2001: Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques. J. Climate, 14, 44224446, doi:10.1175/1520-0442(2001)014<4422:PSOIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turco, M., , M. Quintana-Seguí, , C. Llasat, , S. Herrera, , and J. M. Gutiérrez, 2011: Testing MOS precipitation downscaling for ENSEMBLES regional climate models over Spain. J. Geophys. Res., 116, D18109, doi:10.1029/2011JD016166.

    • Search Google Scholar
    • Export Citation
  • Turco, M., , A. Sanna, , S. Herrera, , M. Llasat, , and J. Gutiérrez, 2013: Large biases and inconsistent climate change signals in ENSEMBLES regional projections. Climatic Change, 120, 859869, doi:10.1007/s10584-013-0844-y.

    • Search Google Scholar
    • Export Citation
  • Turco, M., , A. Sanna, , S. Herrera, , M. C. Llasat, , and J. M. Gutiérrez, 2015: Evaluation of the ENSEMBLES transient RCM simulations over Spain: Present climate performance and future projections. Climate Change and Engineering Geology, Vol. 1, Engineering Geology for Society and Territory, G. Lollino et al., Eds., Springer, 199–203.

  • Uppala, S. M., 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van der Linden, P., , and J. F. B. Mitchell, Eds., 2009: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, 160 pp.

  • von Storch, H., , E. Zorita, , and U. Cubasch, 1993: Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime. J. Climate, 6, 11611171, doi:10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wetterhall, F., , S. Halldin, , and C. Y. Xu, 2005: Statistical precipitation downscaling in central Sweden with the analogue method. J. Hydrol., 306, 174190, doi:10.1016/j.jhydrol.2004.09.008.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., , C. S. Bretherton, , and E. P. Salathé, 2003: Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Climate, 16, 799816, doi:10.1175/1520-0442(2003)016<0799:SPDOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winkler, J. A., , G. S. Guentchev, , M. Liszewska, , Perdinan, , and P.-N. Tan, 2011: Climate scenario development and applications for local/regional climate change impact assessments: An overview for the non-climate scientist. Geogr. Compass, 5, 301328, doi:10.1111/j.1749-8198.2011.00426.x.

    • Search Google Scholar
    • Export Citation
  • Yang, C., , R. E. Chandler, , V. S. Isham, , and H. S. Wheater, 2005: Spatial-temporal rainfall simulation using generalized linear models. Water Resour. Res., 41, W11415, doi:10.1029/2004WR003739.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., , and H. von Storch, 1999: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12, 24742489, doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 14
PDF Downloads 87 87 11

Reassessing Model Uncertainty for Regional Projections of Precipitation with an Ensemble of Statistical Downscaling Methods

View More View Less
  • 1 Grupo de Meteorología, Instituto de Física de Cantabria, Consejo Superior de Investigaciones Científicas–Universidad de Cantabria, and Predictia Intelligent Data Solutions SL, Santander, Spain
  • | 2 Grupo de Meteorología, Instituto de Física de Cantabria, Consejo Superior de Investigaciones Científicas–Universidad de Cantabria, Santander, Spain
  • | 3 Grupo de Meteorología, Deptartamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, Spain
  • | 4 Grupo de Meteorología, Instituto de Física de Cantabria, Consejo Superior de Investigaciones Científicas–Universidad de Cantabria, Santander, Spain
© Get Permissions
Restricted access

Abstract

This is the second in a pair of papers in which the performance of statistical downscaling methods (SDMs) is critically reassessed with respect to their robust applicability in climate change studies. Whereas the companion paper focused on temperatures, the present manuscript deals with precipitation and considers an ensemble of 12 SDMs from the analog, weather typing, and regression families. First, the performance of the methods is cross-validated considering reanalysis predictors, screening different geographical domains and predictor sets. Standard accuracy and distributional similarity scores and a test for extrapolation capability are considered. The results are highly dependent on the predictor sets, with optimum configurations including information from midtropospheric humidity. Second, a reduced ensemble of well-performing SDMs is applied to four GCMs to properly assess the uncertainty of downscaled future climate projections. The results are compared with an ensemble of regional climate models (RCMs) produced in the ENSEMBLES project. Generally, the mean signal is similar with both methodologies (with the exception of summer, which is drier for the RCMs) but the uncertainty (spread) is larger for the SDM ensemble. Finally, the spread contribution of the GCM- and SDM-derived components is assessed using a simple analysis of variance previously applied to the RCMs, obtaining larger interaction terms. Results show that the main contributor to the spread is the choice of the GCM, although the SDM dominates the uncertainty in some cases during autumn and summer due to the diverging projections from different families.

Corresponding author address: D. San-Martín, Predictia Intelligent Data Solutions SL, Avda. los Castros s/n. I+D S345, 39005, Santander, Spain. E-mail: daniel@predictia.es

Abstract

This is the second in a pair of papers in which the performance of statistical downscaling methods (SDMs) is critically reassessed with respect to their robust applicability in climate change studies. Whereas the companion paper focused on temperatures, the present manuscript deals with precipitation and considers an ensemble of 12 SDMs from the analog, weather typing, and regression families. First, the performance of the methods is cross-validated considering reanalysis predictors, screening different geographical domains and predictor sets. Standard accuracy and distributional similarity scores and a test for extrapolation capability are considered. The results are highly dependent on the predictor sets, with optimum configurations including information from midtropospheric humidity. Second, a reduced ensemble of well-performing SDMs is applied to four GCMs to properly assess the uncertainty of downscaled future climate projections. The results are compared with an ensemble of regional climate models (RCMs) produced in the ENSEMBLES project. Generally, the mean signal is similar with both methodologies (with the exception of summer, which is drier for the RCMs) but the uncertainty (spread) is larger for the SDM ensemble. Finally, the spread contribution of the GCM- and SDM-derived components is assessed using a simple analysis of variance previously applied to the RCMs, obtaining larger interaction terms. Results show that the main contributor to the spread is the choice of the GCM, although the SDM dominates the uncertainty in some cases during autumn and summer due to the diverging projections from different families.

Corresponding author address: D. San-Martín, Predictia Intelligent Data Solutions SL, Avda. los Castros s/n. I+D S345, 39005, Santander, Spain. E-mail: daniel@predictia.es
Save