• Chang, P., , L. Zhang, , R. Saravanan, , D. J. Vimont, , J. C. H. Chiang, , L. Ji, , H. Seidel, , and M. K. Tippet, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, doi:10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chang, Y.-S., , S. Zhang, , A. Rosati, , T. L. Delworth, , and W. F. Stern, 2013: An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Climate Dyn., 40, 775803, doi:10.1007/s00382-012-1412-2.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 2004: ENSO and tropical cyclone activity. Hurricanes and Typhoons: Past, Present, and Potential, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 297–332.

  • Chu, P.-S., , and J. Wang, 1997: Tropical cyclone occurrences in the vicinity of Hawaii: Are the differences between El Niño and non–El Niño years significant? J. Climate, 10, 26832689, doi:10.1175/1520-0442(1997)010<2683:TCOITV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., , and J. D. Clark, 1999: Decadal variations of tropical cyclone activity over the central North Pacific. Bull. Amer. Meteor. Soc., 80, 18751881, doi:10.1175/1520-0477(1999)080<1875:DVOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, J. M., , and D. R. Roache, 2011: The 2009 hurricane season in the eastern North Pacific basin: An analysis of environmental conditions. Mon. Wea. Rev., 139, 16731682, doi:10.1175/2010MWR3538.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., , F. Zeng, , A. Rosati, , G. A. Vecchi, , and A. T. Wittenberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, doi:10.1175/JCLI-D-14-00616.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8, 16771680, doi:10.1175/1520-0442(1995)008<1677:OTRBTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Di Liberto, T., 2015: Central Pacific hurricane party: Three’s company. ClimateWatch, posted 3 September 2015. [Available online at https://www.climate.gov/news-features/event-tracker/central-pacific-hurricane-party-three’s-company.]

  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , J. A. Renwick, , M. J. Salinger, , and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 211214, doi:10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1987: Tropical cyclone formation. A Global View of Tropical Cyclones, R. L. Elsberry et al., Eds., Naval Postgraduate School, 53–90.

  • Gnanadesikan, A., and et al. , 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1975: Tropical cyclone genesis. Colorado State University Dept. of Atmospheric Science Paper 234, 121 pp.

  • Harris, L. M., , S.-J. Lin, , and C. Y. Tu, 2016: High-resolution climate simulations using GFDL HiRAM with a stretched global grid. J. Climate, 29, 42934314, doi:10.1175/JCLI-D-15-0389.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, doi:10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Jaeger, C. C., , J. Krause, , A. Haas, , R. Klein, , and K. Hasselmann, 2008: A method for computing the fraction of attributable risk related to climate damages. Risk Anal., 28, 815823, doi:10.1111/j.1539-6924.2008.01070.x.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and et al. , 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, doi:10.1175/JCLI-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and et al. , 2016: The roles of radiative forcing, sea surface temperatures, and atmospheric and land initial conditions in U.S. summer warming episodes. J. Climate, 29, 41214135, doi:10.1175/JCLI-D-15-0471.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., , J. Boucharel, , and I.-I. Lin, 2014: Eastern Pacific tropical cyclone intensified by El Niño delivery of subsurface ocean heat. Nature, 516, 8285, doi:10.1038/nature13958.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., , G. A. Vecchi, , T. R. Knutson, , W. G. Anderson, , T. L. Delworth, , A. Rosati, , F. Zeng, , and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P., , W. Gray, , and C. Fogarty, 2015: Active Atlantic hurricane era at its end? Nat. Geosci., 8, 737738, doi:10.1038/ngeo2529.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neuman, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , J. J. Sirutis, , M. Zhao, , R. E. Tuleya, , M. Bender, , G. A. Vecchi, , G. Villarini, , and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, doi:10.1175/JCLI-D-15-0129.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., , G. A. Vecchi, , R. Msadek, , A. Wittenberg, , T. Delworth, , and F. Zeng, 2015: The seasonality of the Great Plains low-level jet and ENSO relationship. J. Climate, 28, 45254544, doi:10.1175/JCLI-D-14-00590.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., , G. A. Vecchi, , R. Msadek, , H. Murakami, , A. Wittenberg, , and F. Zeng, 2016: Impact of strong ENSO on regional tropical cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic Oceans. J. Climate, 29, 23752394, doi:10.1175/JCLI-D-15-0468.1.

    • Search Google Scholar
    • Export Citation
  • Kucharski, K., , I.-S. Kang, , R. Farneti, , and L. Feudale, 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702, doi:10.1029/2010GL046248.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., , and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and et al. , 2004: The Atlantic hurricane database reanalysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Landsea, C. W., , G. A. Vecchi, , L. Bengtsson, , and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519, doi:10.1175/2009JCLI3034.1.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., , S.-K. Lee, , C. Wang, , E.-S. Chung, , and D. Enfield, 2012: Impacts of non-canonical El Niño patterns on Atlantic hurricane activity. Geophys. Res. Lett., 39, L14706, doi:10.1029/2012GL052595.

    • Search Google Scholar
    • Export Citation
  • Li, T., , M. Kwon, , M. Zhao, , J.-S. Kug, , J.-J. Luo, , and W. Yu, 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi:10.1029/2010GL045124.

    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., , T. K. Latham, , T. Magill, , J. V. Clark, , C. J. Melick, , and P. S. Market, 2008: The interannual variability of hurricane activity in the Atlantic and East Pacific regions. Natl. Wea. Dig., 32, 119135.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., , M. Zhao, , and I. M. Held, 2013: The sensitivity of hurricane frequency to ITCZ changes and radiatively forced warming in aquaplanet simulations. Geophys. Res. Lett., 40, 41094114, doi:10.1002/grl.50680.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., , G. A. Vecchi, , M. Winton, , and R. G. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 52085215, doi:10.1002/2014GL060799.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , T. Li, , and A. Kitoh, 2013: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749754, doi:10.1038/nclimate1890.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , G. A. Vecchi, , T. L. Delworth, , K. Paffendorf, , R. Gudgel, , L. Jia, , and F. Zeng, 2015a: Investigating the influence of anthropogenic forcing and natural variability on the 2014 Hawaiian hurricane season [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96, S115S119, doi:10.1175/BAMS-D-15-00119.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and et al. , 2015b: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, doi:10.1175/JCLI-D-15-0216.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , G. Villarini, , G. A. Vecchi, , W. Zhang, , and R. Gudgel, 2016a: Statistical–dynamical seasonal forecast of North Atlantic and U.S. landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. Mon. Wea. Rev., 144, 21012123, doi:10.1175/MWR-D-15-0308.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and et al. , 2016b: Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Climate, 29, 79777989, 10.1175/JCLI-D-16-0233.1.

    • Search Google Scholar
    • Export Citation
  • Power, S., , T. Casey, , C. Folland, , A. Colman, , and V. Mehta, 1999: Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, doi:10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , and D. P. Rowell, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • The Weather Channel, 2015: Three category 4 hurricanes in the Pacific Ocean: How rare is that? The Weather Channel, accessed November 2015. [Available online at http://www.weather.com/storms/hurricane/news/three-category-4-hurricanes-pacific-kilo-ignacio-jimena.]

  • Thompson, A., 2015: El Niño helps boost Pacific storm season. Accessed November 2015. [Available online at http://www.climatecentral.org/news/el-nino-boosts-pacific-storms-19210.]

  • Unisys, 2016: Unisys weather hurricane tropical data. Accessed January 2016. [Available online at http://weather.unisys.com/hurricane/.]

  • Vecchi, G. A., , and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and et al. , 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Y. Yang, , Q.-H. Ding, , H. Murakami, , and F. Huang, 2010: Climate control of the global tropical storm days (1965–2008). Geophys. Res. Lett., 37, L07704, doi:10.1029/2010GL042487.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , and S.-K. Lee, 2009: Co-variability of tropical cyclones in the North Atlantic and the eastern North Pacific. Geophys. Res. Lett., 36, L24702, doi:10.1029/2009GL041469.

    • Search Google Scholar
    • Export Citation
  • Whitney, L. D., , and J. Hobgood, 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10, 29212930, doi:10.1175/1520-0442(1997)010<2921:TRBSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winton, M., , W. G. Anderson, , T. L. Delworth, , S. M. Griffies, , W. J. Hurlin, , and A. Rosati, 2014: Has coarse ocean resolution biased simulations of transient climate sensitivity? Geophys. Res. Lett., 41, 85228529, doi:10.1002/2014GL061523.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., , A. Rosati, , N.-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Wu, P., , and P.-S. Chu, 2007: Characteristics of tropical cyclone activity over the eastern North Pacific: The extremely active 1992 and the inactive 1997. Tellus, 59A, 444454, doi:10.1111/j.1600-0870.2007.00248.x.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and et al. , 2015a: Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J. Climate, 28, 35923611, doi:10.1175/JCLI-D-14-00517.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , G. A. Vecchi, , T. L. Delworth, , K. Paffendorf, , L. Jia, , R. Gudgel, , F. Zeng, , and S. D. Underwood, 2015b: Extreme North America winter storm season of 2013/14: Roles of radiative forcing and the global warming hiatus [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96, S25S28, doi:10.1175/BAMS-D-15-00133.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , P. Chang, , and L. Ji, 2009: Linking the Pacific meridional mode to ENSO: Coupled model analysis. J. Climate, 22, 34883505, doi:10.1175/2008JCLI2473.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L. P., , and T. L. Delworth, 2015: Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics Laboratory. J. Climate, 28, 76787701, doi:10.1175/JCLI-D-14-00647.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., , and A. Rosati, 2010: An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon. Wea. Rev., 138, 39053931, doi:10.1175/2010MWR3326.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., and et al. , 2016a: Improved simulation of tropical cyclone responses to ENSO in the western North Pacific in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 29, 13911415, doi:10.1175/JCLI-D-15-0475.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , G. Villarini, , G. A. Vecchi, , H. Murakami, , and R. Gudgel, 2016b: Statistical–dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. J. Adv. Model. Earth Syst., 8, 538565, doi:10.1002/2015MS000607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 373 373 63
PDF Downloads 151 151 25

Dominant Role of Subtropical Pacific Warming in Extreme Eastern Pacific Hurricane Seasons: 2015 and the Future

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • | 3 Engility Corporation, Chantilly, Virginia
  • | 4 University Corporation for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The 2015 hurricane season in the eastern and central Pacific Ocean (EPO and CPO), particularly around Hawaii, was extremely active, including a record number of tropical cyclones (TCs) and the first instance of three simultaneous category-4 hurricanes in the EPO and CPO. A strong El Niño developed during the 2015 boreal summer season and was attributed by some to be the cause of the extreme number of TCs. However, according to a suite of targeted high-resolution model experiments, the extreme 2015 EPO and CPO hurricane season was not primarily induced by the 2015 El Niño tropical Pacific warming, but by warming in the subtropical Pacific Ocean. This warming is not typical of El Niño, but rather of the Pacific meridional mode (PMM) superimposed on long-term anthropogenic warming. Although the likelihood of such an extreme year depends on the phase of natural variability, the coupled GCM projects an increase in the frequency of such extremely active TC years over the next few decades for EPO, CPO, and Hawaii as a result of enhanced subtropical Pacific warming from anthropogenic greenhouse gas forcing.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0424.s1.

Corresponding author address: Hiroyuki Murakami, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: hir.murakami@gmail.com

Abstract

The 2015 hurricane season in the eastern and central Pacific Ocean (EPO and CPO), particularly around Hawaii, was extremely active, including a record number of tropical cyclones (TCs) and the first instance of three simultaneous category-4 hurricanes in the EPO and CPO. A strong El Niño developed during the 2015 boreal summer season and was attributed by some to be the cause of the extreme number of TCs. However, according to a suite of targeted high-resolution model experiments, the extreme 2015 EPO and CPO hurricane season was not primarily induced by the 2015 El Niño tropical Pacific warming, but by warming in the subtropical Pacific Ocean. This warming is not typical of El Niño, but rather of the Pacific meridional mode (PMM) superimposed on long-term anthropogenic warming. Although the likelihood of such an extreme year depends on the phase of natural variability, the coupled GCM projects an increase in the frequency of such extremely active TC years over the next few decades for EPO, CPO, and Hawaii as a result of enhanced subtropical Pacific warming from anthropogenic greenhouse gas forcing.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0424.s1.

Corresponding author address: Hiroyuki Murakami, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: hir.murakami@gmail.com

Supplementary Materials

    • Supplemental Materials (DOC 660.50 KB)
Save