• Agarwal, N., , A. Köhl, , C. R. Mechoso, , and D. Stammer, 2014: On the early response of the climate system to a meltwater input from Greenland. J. Climate, 27, 82768296, doi:10.1175/JCLI-D-13-00762.1.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., , S. K. Behera, , S. A. Rao, , H. Weng, , and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Clement, A., , K. Bellomo, , L. N. Murphy, , M. A. Cane, , T. Mauritsen, , G. Rädel, , and B. Stevens, 2015: The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350, 320324, doi:10.1126/science.aab3980.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and et al. , 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161, doi:10.1175/JCLI3760.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and et al. , 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Davini, P., , J. von Hardenberg, , and S. Corti, 2015: Tropical origin for the impacts of the Atlantic Multidecadal Variability on the Euro-Atlantic climate. Environ. Res. Lett., 10, 094010, doi:10.1088/1748-9326/10/9/094010.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., , S. Manabe, , and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011, doi:10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., , and S. Nigam, 2004: On the forcing of ENSO teleconnections by anomalous heating and cooling. J. Climate, 17, 32253235, doi:10.1175/1520-0442(2004)017<3225:OTFOET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , J. M. Wallace, , D. S. Battisti, , E. J. Steig, , A. J. E. Gallant, , H.-J. Kim, , and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and R. T. Sutton, 2007: Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Climate, 20, 49204939, doi:10.1175/JCLI4284.1.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , R. T. Sutton, , and A. A. Scaife, 2006: Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, doi:10.1029/2006GL025766.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , A. M. Mestas-Nuñez, , and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , M. S. Madhusoodanan, , C. P. Neema, , and D. Sengupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, doi:10.1029/2005GL024803.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., , J.-S. Kug, , J.-Y. Park, , and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, doi:10.1038/ngeo1686.

    • Search Google Scholar
    • Export Citation
  • Heckley, W. A., , and A. E. Gill, 1984: Some simple analytic solutions to the problems of forced equatorial long waves. Quart. J. Roy. Meteor. Soc., 110, 203217, doi:10.1002/qj.49711046314.

    • Search Google Scholar
    • Export Citation
  • Hodson, D. L. R., , R. T. Sutton, , C. Cassou, , N. Keenlyside, , Y. Okumura, , and T. Zhou, 2010: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 10411058, doi:10.1007/s00382-009-0571-2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ji, X., , J. D. Neelin, , S.-K. Lee, , and C. R. Mechoso, 2014: Interhemispheric teleconnections from tropical heat sources in intermediate and simple models. J. Climate, 27, 684697, doi:10.1175/JCLI-D-13-00017.1.

    • Search Google Scholar
    • Export Citation
  • Jo, H.-S., , S.-W. Yeh, , and S.-K. Lee, 2015: Changes in the relationship in the SST variability between the tropical Pacific and the North Pacific across the 1998/1999 regime shift. Geophys. Res. Lett., 42, 71717178, doi:10.1002/2015GL065049.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., , H.-h. No, , and F. Kucharski, 2014: ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J. Climate, 27, 79117920, doi:10.1175/JCLI-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., , and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., , C. K. Folland, , and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and et al. , 2016: Atlantic forcing of Pacific decadal variability. Climate Dyn., 46, 23372351, doi:10.1007/s00382-015-2705-z.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., , C. Wang, , and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272284, doi:10.1175/2008JCLI2303.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., , C. R. Mechoso, , C. Wang, , and J. D. Neelin, 2013: Interhemispheric influence of the northern summer monsoons on southern subtropical anticyclones. J. Climate, 26, 10 19310 204, doi:10.1175/JCLI-D-13-00106.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T., , and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • Li, X., , D. M. Holland, , E. P. Gerber, , and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, doi:10.1038/nature12945.

    • Search Google Scholar
    • Export Citation
  • Li, X., , S.-P. Xie, , S. T. Gille, , and C. Yoo, 2015: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, doi:10.1038/nclimate2840.

    • Search Google Scholar
    • Export Citation
  • Lyu, K., , X. Zhang, , J. A. Church, , and J. Hu, 2016: Evaluation of the interdecadal variability of sea surface temperature and sea level in the Pacific in CMIP3 and CMIP5 models. Int. J. Climatol., 36, 37233740, doi:10.1002/joc.4587.

    • Search Google Scholar
    • Export Citation
  • Ma, S., , and T. Zhou, 2016: Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 30973118, doi:10.1175/JCLI-D-15-0398.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., , A. Timmermann, , M. F. Stuecker, , M. H. England, , M. Merrifield, , F.-F. Jin, , and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, doi:10.1038/nclimate2330.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., , C. Deser, , A. Hu, , A. Timmermann, , and S.-P. Xie, 2009: North Pacific climate response to freshwater forcing in the subarctic North Atlantic: Oceanic and atmospheric pathways. J. Climate, 22, 14241445, doi:10.1175/2008JCLI2511.1.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., , and S.-I. An, 2014: The impact of tropical western Pacific convection on the North Pacific atmospheric circulation during the boreal winter. Climate Dyn., 43, 22272238, doi:10.1007/s00382-013-2047-7.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., , and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, doi:10.1088/1748-9326/9/3/034018.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., , and G. Magnusdottir, 2015: Wintertime atmospheric response to Atlantic multidecadal variability: Effect of stratospheric representation and ocean–atmosphere coupling. Climate Dyn., 47, 10291047, doi:10.1007/s00382-015-2887-4.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., , G. Simpkins, , and G. Magnusdottir, 2016: Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations. J. Geophys. Res., 121, 25712592, doi:10.1002/2015JD024107.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 1995: Factors affecting synoptic-scale vertical motions: A statistical study using a generalized omega equation. Mon. Wea. Rev., 123, 24472460, doi:10.1175/1520-0493(1995)123<2447:FASSVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., , S. McGregor, , A. S. Taschetto, , L. M. Ciasto, , and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, doi:10.1175/JCLI-D-13-00615.1.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., , Y. Peings, , and G. Magnusdottir, 2016: Pacific influences on tropical Atlantic teleconnections to the Southern Hemisphere high latitudes. J. Climate, 29, 64256444, doi:10.1175/JCLI-D-15-0645.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stickler, A., and et al. , 2014: ERA-CLIM: Historical surface and upper-air data for future reanalyses. Bull. Amer. Meteor. Soc., 95, 14191430, doi:10.1175/BAMS-D-13-00147.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., , J. Li, , and S. Zhao, 2015: Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci. Rep., 5, 16 853, doi:10.1038/srep16853.

    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., , S.-I. An, , B.-M. Kim, , and J.-S. Kug, 2015: Asymmetric impact of Atlantic multidecadal oscillation on El Niño and La Niña characteristics. Geophys. Res. Lett., 42, 49985004, doi:10.1002/2015GL064381.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891907, doi:10.1175/JCLI4038.1.

    • Search Google Scholar
    • Export Citation
  • Svendsen, L., , N. G. Kvamstø, , and N. Keenlyside, 2014: Weakening AMOC connects equatorial Atlantic and Pacific interannual variability. Climate Dyn., 43, 29312941, doi:10.1007/s00382-013-1904-8.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , S.-I. An, , U. Krebs, , and H. Goosse, 2005: ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J. Climate, 18, 31223139, doi:10.1175/JCLI3495.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, doi:10.1175/JCLI4283.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , S.-K. Lee, , and C. R. Mechoso, 2010: Interhemispheric influence of the Atlantic warm pool on the southeastern Pacific. J. Climate, 23, 404418, doi:10.1175/2009JCLI3127.1.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 38, 554571, doi:10.1175/1520-0469(1981)038<0554:MDTART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , C. Li, , C. Yang, , and S.-P. Xie, 2008: Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21, 30023019, doi:10.1175/2007JCLI1858.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , X. Wang, , C. Wang, , and B. Dewitte, 2015: On the relationship between the North Pacific climate variability and the central Pacific El Niño. J. Climate, 28, 663677, doi:10.1175/JCLI-D-14-00137.1.

    • Search Google Scholar
    • Export Citation
  • Yu, B., , and G. J. Boer, 2002: The roles of radiation and dynamical processes in the El Niño–like response to global warming. Climate Dyn., 19, 539553, doi:10.1007/s00382-002-0244-x.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, D13106, doi:10.1029/2006JD007715.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, doi:10.1175/2010JCLI3688.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , H.-Y. Kao, , and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 28692884, doi:10.1175/2010JCLI3171.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , M.-M. Lu, , and S. T. Kim, 2012a: A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett., 7, 034025, doi:10.1088/1748-9326/7/3/034025.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , Y. Zou, , S. T. Kim, , and T. Lee, 2012b: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , P.-k. Kao, , H. Paek, , H.-H. Hsu, , C.-W. Hung, , M.-M. Lu, , and S.-I. An, 2015a: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, doi:10.1175/JCLI-D-14-00347.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , H. Paek, , E. S. Saltzman, , and T. Lee, 2015b: The early 1990s change in ENSO–PSA–SAM relationships and its impact on Southern Hemisphere climate. J. Climate, 28, 93939408, doi:10.1175/JCLI-D-15-0335.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , and C. Zhao, 2015: Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: A link with the Atlantic meridional overturning circulation. J. Adv. Model. Earth Syst., 7, 739758, doi:10.1002/2014MS000415.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, doi:10.1175/JCLI3460.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 124 124 30
PDF Downloads 126 126 35

The Influences of the Atlantic Multidecadal Oscillation on the Mean Strength of the North Pacific Subtropical High during Boreal Winter

View More View Less
  • 1 Department of Earth System Science, University of California, Irvine, Irvine, California
© Get Permissions
Restricted access

Abstract

The Atlantic multidecadal oscillation (AMO) has been shown to be capable of exerting significant influences on the Pacific climate. In this study, the authors analyze reanalysis datasets and conduct forced and coupled experiments with an atmospheric general circulation model (AGCM) to explain why the winter North Pacific subtropical high strengthens and expands northwestward during the positive phase of the AMO. The results show that the tropical Atlantic warming associated with the positive AMO phase leads to a westward displacement of the Pacific Walker circulation and a cooling of the tropical Pacific Ocean, thereby inducing anomalous descending motion over the central tropical Pacific. The descending motion then excites a stationary Rossby wave pattern that extends northward to produce a nearly barotropic anticyclone over the North Pacific. A diagnosis based on the quasigeostrophic vertical velocity equation reveals that the stationary wave pattern also results in enhanced subsidence over the northeastern Pacific via the anomalous advections of vorticity and temperature. The anomalous barotropic anticyclone and the enhanced subsidence are the two mechanisms that increase the sea level pressure over the North Pacific. The latter mechanism occurs to the southeast of the former one and thus is more influential in the subtropical high region. Both mechanisms can be produced in forced and coupled AGCMs but are displaced northward as a result of stationary wave patterns that differ from those observed. This explains why the model-simulated North Pacific sea level pressure responses to the AMO tend to be biased northward.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0525.s1.

Corresponding author address: Dr. Kewei Lyu, Department of Earth System Science, University of California, Irvine, 2101C Croul Hall, Irvine, CA 92697-3100. E-mail: lyuk1@uci.edu

Abstract

The Atlantic multidecadal oscillation (AMO) has been shown to be capable of exerting significant influences on the Pacific climate. In this study, the authors analyze reanalysis datasets and conduct forced and coupled experiments with an atmospheric general circulation model (AGCM) to explain why the winter North Pacific subtropical high strengthens and expands northwestward during the positive phase of the AMO. The results show that the tropical Atlantic warming associated with the positive AMO phase leads to a westward displacement of the Pacific Walker circulation and a cooling of the tropical Pacific Ocean, thereby inducing anomalous descending motion over the central tropical Pacific. The descending motion then excites a stationary Rossby wave pattern that extends northward to produce a nearly barotropic anticyclone over the North Pacific. A diagnosis based on the quasigeostrophic vertical velocity equation reveals that the stationary wave pattern also results in enhanced subsidence over the northeastern Pacific via the anomalous advections of vorticity and temperature. The anomalous barotropic anticyclone and the enhanced subsidence are the two mechanisms that increase the sea level pressure over the North Pacific. The latter mechanism occurs to the southeast of the former one and thus is more influential in the subtropical high region. Both mechanisms can be produced in forced and coupled AGCMs but are displaced northward as a result of stationary wave patterns that differ from those observed. This explains why the model-simulated North Pacific sea level pressure responses to the AMO tend to be biased northward.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0525.s1.

Corresponding author address: Dr. Kewei Lyu, Department of Earth System Science, University of California, Irvine, 2101C Croul Hall, Irvine, CA 92697-3100. E-mail: lyuk1@uci.edu

Supplementary Materials

    • Supplemental Materials (DOCX 6.06 MB)
Save