Irrigation Effects on Land–Atmosphere Coupling Strength in the United States

Yaqiong Lu Sierra Nevada Research Institute, University of California, Merced, and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Yaqiong Lu in
Current site
Google Scholar
PubMed
Close
,
Keith Harding Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota

Search for other papers by Keith Harding in
Current site
Google Scholar
PubMed
Close
, and
Lara Kueppers Sierra Nevada Research Institute, University of California, Merced, and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Lara Kueppers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land–atmosphere coupling strength describes the degree to which the atmosphere responds (e.g., via changes in precipitation) to changes in the land surface state (e.g., soil moisture). The Midwest and Great Plains of the United States have been shown to be “hot spots” of coupling by many climate models and some observations. However, very few of the modeling studies have reported whether the climate models applied irrigation in the Midwest and Great Plains, where 24%–27% of farmland is irrigated, leaving open the question of whether irrigation affects current estimates of coupling strength. This study used a regional climate model that incorporated dynamic crop growth and precision irrigation (WRF3.3–CLM4crop) to investigate irrigation effects on land–atmosphere coupling strength. Coupling strength was quantified using multiple indices and the irrigated land-induced precipitation was tracked using a back trajectory method. The indices showed a consistent and significant decline in local coupling strength with irrigation in the Midwest and northern Great Plains. These reductions were due to increased soil moisture but decreased local precipitation and lower sensitivity of latent heat flux to soil moisture over irrigated regions. The back trajectories of water vapor transport confirmed that irrigation largely did not contribute to local precipitation. Water vapor from irrigated land was transported to the Midwest and U.S. Northeast where it fell as precipitation, suggesting that irrigation has a broader spatial impact on soil moisture–precipitation coupling than simply through local soil moisture–evapotranspiration coupling. The present study suggests that climate models without irrigation schemes may overestimate the land–atmosphere coupling strength over irrigated agricultural regions but underestimate coupling strength over neighboring nonirrigated regions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yaqiong Lu, yaqiong@ucar.edu

Abstract

Land–atmosphere coupling strength describes the degree to which the atmosphere responds (e.g., via changes in precipitation) to changes in the land surface state (e.g., soil moisture). The Midwest and Great Plains of the United States have been shown to be “hot spots” of coupling by many climate models and some observations. However, very few of the modeling studies have reported whether the climate models applied irrigation in the Midwest and Great Plains, where 24%–27% of farmland is irrigated, leaving open the question of whether irrigation affects current estimates of coupling strength. This study used a regional climate model that incorporated dynamic crop growth and precision irrigation (WRF3.3–CLM4crop) to investigate irrigation effects on land–atmosphere coupling strength. Coupling strength was quantified using multiple indices and the irrigated land-induced precipitation was tracked using a back trajectory method. The indices showed a consistent and significant decline in local coupling strength with irrigation in the Midwest and northern Great Plains. These reductions were due to increased soil moisture but decreased local precipitation and lower sensitivity of latent heat flux to soil moisture over irrigated regions. The back trajectories of water vapor transport confirmed that irrigation largely did not contribute to local precipitation. Water vapor from irrigated land was transported to the Midwest and U.S. Northeast where it fell as precipitation, suggesting that irrigation has a broader spatial impact on soil moisture–precipitation coupling than simply through local soil moisture–evapotranspiration coupling. The present study suggests that climate models without irrigation schemes may overestimate the land–atmosphere coupling strength over irrigated agricultural regions but underestimate coupling strength over neighboring nonirrigated regions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yaqiong Lu, yaqiong@ucar.edu
Save
  • Adegoke, J. O., R. A. Pielke, J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Mon. Wea. Rev., 131, 556564, doi:10.1175/1520-0493(2003)131<0556:IOIOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alter, R. E., Y. Fan, B. R. Lintner, and C. P. Weaver, 2015: Observational evidence that Great Plains irrigation has enhanced summer precipitation intensity and totals in the Midwestern United States. J. Hydrometeor., 16, 17171735, doi:10.1175/JHM-D-14-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badger, A. M., and P. A. Dirmeyer, 2015: Climate response to Amazon forest replacement by heterogeneous crop cover. Hydrol. Earth Syst. Sci., 19, 45474557, doi:10.5194/hess-19-4547-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., P. Viterbo, M. J. Miller, and A. K. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture. Mon. Wea. Rev., 124, 362383, doi:10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., and Coauthors, 2015: Advancements in decadal climate predictability: The role of nonoceanic drivers. Rev. Geophys., 53, 165202, doi:10.1002/2014RG000473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225, doi:10.1029/95JD02135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and W.-Y. Sun, 1999: Numerical simulation of the 1993 Midwestern flood: Land–atmosphere interactions. J. Climate, 12, 14901505, doi:10.1175/1520-0442(1999)012<1490:NSOTMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., G. Myhre, and A. Myhre, 2004: Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dyn., 22, 597603, doi:10.1007/s00382-004-0402-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., P. A. Dirmeyer, A. Sudradjat, B. S. Levy, and F. Bernal, 2001: A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi River basin. J. Hydrometeor., 2, 537557, doi:10.1175/1525-7541(2001)002<0537:AYCDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteor., 54, 107136, doi:10.1016/0168-1923(91)90002-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., M. Ribas-Carbo, and J. A. Berry, 1992: Coupled photosynthesis–stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538, doi:10.1071/PP9920519.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Rep. NCAR/TN-464+STR, 226 pp.

  • Cook, B. I., M. J. Puma, and N. Y. Krakauer, 2011: Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Climate Dyn., 37, 15871600, doi:10.1007/s00382-010-0932-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., G. Taylor, and W. Gibson, 1997: The PRISM approach to mapping precipitation and temperature. 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 10–12.

  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, doi:10.1029/2010JD013892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Ridder, K., and H. Gallée, 1998: Land surface–induced regional climate change in southern Israel. J. Appl. Meteor., 37, 14701485, doi:10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Luzio, M., G. L. Johnson, C. Daly, J. K. Eischeid, and J. G. Arnold, 2008: Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteor. Climatol., 47, 475497, doi:10.1175/2007JAMC1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett., 38, L16702, doi:10.1029/2011GL048268.

  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, doi:10.1175/JHM557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890, doi:10.1007/BF00386231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012a: Modeling the atmospheric response to irrigation in the Great Plains. Part I: General impacts on precipitation and the energy budget. J. Hydrometeor., 13, 16671686, doi:10.1175/JHM-D-11-098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2012b: Modeling the atmospheric response to irrigation in the Great Plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. J. Hydrometeor., 13, 16871703, doi:10.1175/JHM-D-11-099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., P. K. Snyder, and S. Liess, 2013: Use of dynamical downscaling to improve the simulation of central U.S. warm season precipitation in CMIP5 models. J. Geophys. Res. Atmos., 118, 12 52212 536, doi:10.1002/2013JD019994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., T. E. Twine, and Y. Lu, 2015: Effects of dynamic crop growth on the simulated precipitation response to irrigation. Earth Interact., 19, 131, doi:10.1175/EI-D-15-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., X.-W. Quan, and J. Eischeid, 2009: Distinct causes for two principal U.S. droughts of the 20th century. Geophys. Res. Lett., 36, L19708, doi:10.1029/2009GL039860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and E. Kalnay, 2000: Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma–Texas drought. Nature, 408, 842844, doi:10.1038/35048548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 2000: Impact of soil moisture anomalies on seasonal, summertime circulation over North America in a regional climate model. J. Geophys. Res., 105, 29 62529 634, doi:10.1029/2000JD900276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howell, T. A., J. L. Hatfield, H. Yamada, and K. R. Davis, 1984: Evaluation of cotton canopy temperature to detect crop water stress. Trans. ASABE, 27, 8488, doi:10.13031/2013.32740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. M. van den Dool, and K. P. Georgakakos, 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362, doi:10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J. M., and N. L. Miller, 2011: Regional simulations to quantify land use change and irrigation impacts on hydroclimate in the California Central Valley. Theor. Appl. Climatol., 104, 429442, doi:10.1007/s00704-010-0352-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenny, J. F., N. L. Barber, S. S. Hutson, K. S. Linsey, J. K. Lovelace, and M. A. Maupin, 2009: Estimated use of water in the United States in 2005. U.S. Geological Survey Circular 1344, 52 pp. [Available online at https://pubs.usgs.gov/circ/1344/.]

    • Crossref
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2011: The second phase of the Global Land–Atmosphere Coupling Experiment: Soil moisture contributions to subseasonal forecast skill. J. Hydrometeor., 12, 805822, doi:10.1175/2011JHM1365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., and M. A. Snyder, 2012: Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. Climate Dyn., 38, 10171029, doi:10.1007/s00382-011-1123-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., M. A. Snyder, and L. C. Sloan, 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703, doi:10.1029/2006GL028679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levis, S., G. B. Bonan, E. Kluzek, P. E. Thornton, A. Jones, W. J. Sacks, and C. J. Kucharik, 2012: Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land–atmosphere fluxes. J. Climate, 25, 48394859, doi:10.1175/JCLI-D-11-00446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, M. H., and J. S. Famiglietti, 2013: Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett., 40, 301306, doi:10.1002/grl.50108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D., G. Bala, A. Mirin, T. Phillips, R. Maxwell, and D. Rotman, 2009: Regional differences in the influence of irrigation on climate. J. Climate, 22, 22482255, doi:10.1175/2008JCLI2703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Y., J. Jin, and L. Kueppers, 2015: Crop growth and irrigation interact to influence surface fluxes in a regional climate–cropland model (WRF3.3-CLM4crop). Climate Dyn., 45, 33473363, doi:10.1007/s00382-015-2543-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, R., and G. Wang, 2011: Impact of sea surface temperature and soil moisture on summer precipitation in the United States based on observational data. J. Hydrometeor., 12, 10861099, doi:10.1175/2011JHM1312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, R., and G. Wang, 2012: Summer land–atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. J. Hydrometeor., 13, 10101022, doi:10.1175/JHM-D-11-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterman, J., 1977: Anthropogenic impact on albedo of Earth. Climatic Change, 1, 137155, doi:10.1007/BF01884408.

  • Ozdogan, M., and G. D. Salvucci, 2004: Irrigation-induced changes in potential evapotranspiration in southeastern Turkey: Test and application of Bouchet’s complementary hypothesis. Water Resour. Res., 40, W04301, doi:10.1029/2003WR002822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2002: Teleconnections of soil moisture and rainfall during the 1993 Midwest summer flood. Geophys. Res. Lett., 29, 1865, doi:10.1029/2002GL014815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., M. Y. Huang, B. Yang, and L. K. Berg, 2013: A modeling study of irrigation effects on surface fluxes and land–air–cloud interactions in the southern Great Plains. J. Hydrometeor., 14, 700721, doi:10.1175/JHM-D-12-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski, 2009: Effects of global irrigation on the near-surface climate. Climate Dyn., 33, 159175, doi:10.1007/s00382-008-0445-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saeed, F., S. Hagemann, and D. Jacob, 2009: Impact of irrigation on the South Asian summer monsoon. Geophys. Res. Lett., 36, L20711, doi:10.1029/2009GL040625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, doi:10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, doi:10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, M., Z. Pan, R. W. Turner, and E. S. Takle, 1998: On the potential impact of irrigated areas in North America on summer rainfall caused by large-scale systems. J. Appl. Meteor., 37, 325331, doi:10.1175/1520-0450-37.3.325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, S., P. Döll, J. Hoogeveen, J. M. Faures, K. Frenken, and S. Feick, 2005: Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci., 9, 535547, doi:10.5194/hess-9-535-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., J. L. Li, K. L. Hsu, and X. G. Gao, 2011: How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data. J. Geophys. Res., 116, D06102, doi:10.1029/2010JD014775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanjura, D. F., D. R. Upchurch, and J. R. Mahan, 1992: Automated irrigation based on threshold canopy temperature. Trans. ASABE, 35, 14111417, doi:10.13031/2013.28748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., S. Schubert, and H. Wang, 2009: Warm season variations in the low-level circulation and precipitation over the central United States in observations, AMIP simulations, and idealized SST experiments. J. Climate, 22, 54015420, doi:10.1175/2009JCLI2984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wise, R. R., A. J. Olson, S. M. Schrader, and T. D. Sharkey, 2004: Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ., 27, 717724, doi:10.1111/j.1365-3040.2004.01171.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X. B., M. Barlage, C. Castro, and K. Fling, 2010: Comparison of land–precipitation coupling strength using observations and models. J. Hydrometeor., 11, 979994, doi:10.1175/2010JHM1226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 869 264 43
PDF Downloads 1552 154 33