The Change in Low Cloud Cover in a Warmed Climate Inferred from AIRS, MODIS, and ERA-Interim

Daniel T. McCoy Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Daniel T. McCoy in
Current site
Google Scholar
PubMed
Close
,
Ryan Eastman Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Ryan Eastman in
Current site
Google Scholar
PubMed
Close
,
Dennis L. Hartmann Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
, and
Robert Wood Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Decreases in subtropical low cloud cover (LCC) occur in climate model simulations of global warming. In this study 8-day-averaged observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) spanning 2002–14 are combined with European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis to compute the dependence of the observed variability of LCC on various predictor variables. Large-scale thermodynamic and dynamic predictors of LCC are selected based on insight from large-eddy simulations (LESs) and observational analysis. It is found that increased estimated inversion strength (EIS) is associated with increased LCC. Drying of the free troposphere is associated with decreased LCC. Decreased LCC accompanies subsidence in regions of relatively low EIS; the opposite is found in regions of high EIS. Finally, it is found that increasing sea surface temperature (SST) leads to a decrease in LCC. These results are in keeping with previous studies of monthly and annual data. Based upon the observed response of LCC to natural variability of the control parameters, the change in LCC is estimated for an idealized warming scenario where SST increases by 1 K and EIS increases by 0.2 K. For this change in EIS and SST the LCC is inferred to decrease by 0.5%–2.7% when the regression models are trained on data observed between 40°S and 40°N and by 1.1%–1.4% when trained on data from trade cumulus–dominated regions. When the data used to train the regression model are restricted to stratocumulus-dominated regions the change in LCC is highly uncertain and varies between −1.6% and +1.4%, depending on the stratocumulus-dominated region used to train the regression model.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0734.s1.

Corresponding author e-mail: Daniel T. McCoy, dtmccoy@atmos.uw.edu

Abstract

Decreases in subtropical low cloud cover (LCC) occur in climate model simulations of global warming. In this study 8-day-averaged observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) spanning 2002–14 are combined with European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis to compute the dependence of the observed variability of LCC on various predictor variables. Large-scale thermodynamic and dynamic predictors of LCC are selected based on insight from large-eddy simulations (LESs) and observational analysis. It is found that increased estimated inversion strength (EIS) is associated with increased LCC. Drying of the free troposphere is associated with decreased LCC. Decreased LCC accompanies subsidence in regions of relatively low EIS; the opposite is found in regions of high EIS. Finally, it is found that increasing sea surface temperature (SST) leads to a decrease in LCC. These results are in keeping with previous studies of monthly and annual data. Based upon the observed response of LCC to natural variability of the control parameters, the change in LCC is estimated for an idealized warming scenario where SST increases by 1 K and EIS increases by 0.2 K. For this change in EIS and SST the LCC is inferred to decrease by 0.5%–2.7% when the regression models are trained on data observed between 40°S and 40°N and by 1.1%–1.4% when trained on data from trade cumulus–dominated regions. When the data used to train the regression model are restricted to stratocumulus-dominated regions the change in LCC is highly uncertain and varies between −1.6% and +1.4%, depending on the stratocumulus-dominated region used to train the regression model.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0734.s1.

Corresponding author e-mail: Daniel T. McCoy, dtmccoy@atmos.uw.edu

Supplementary Materials

    • Supplemental Materials (DOCX 201.70 KB)
Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, doi:10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234258, doi:10.1002/jame.20025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91114, doi:10.1002/2013MS000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316337, doi:10.1002/jame.20019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., and S. Bony, 2013: Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dyn., 40, 24152431, doi:10.1007/s00382-011-1279-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., Y. Y. Zhang, and S. A. Klein, 2013: CMIP3 subtropical stratocumulus cloud feedback interpreted through a mixed-layer model. J. Climate, 26, 16071625, doi:10.1175/JCLI-D-12-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jong, S., 1993: SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst., 18, 251263, doi:10.1016/0169-7439(93)85002-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, S. dal Gesso, H. J. J. Jonker, J. Schalkwijk, and J. Sival, 2014: A mixed-layer model study of the stratocumulus response to changes in large-scale conditions. J. Adv. Model. Earth Syst., 6, 12561270, doi:10.1002/2014MS000347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., and R. Wood, 2016: Factors controlling low-cloud evolution over the eastern subtropical oceans: A Lagrangian perspective using the A-Train satellites. J. Atmos. Sci., 73, 331351, doi:10.1175/JAS-D-15-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., S. G. Warren, and C. J. Hahn, 2011: Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Climate, 24, 59145934, doi:10.1175/2011JCLI3972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., R. Wood, and C. S. Bretherton, 2016: Time scales of clouds and cloud-controlling variables in subtropical stratocumulus from a Lagrangian perspective. J. Atmos. Sci., 73, 30793091, doi:10.1175/JAS-D-16-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and D. A. Short, 1980: On the use of Earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 12331250, doi:10.1175/1520-0469(1980)037<1233:OTUOER>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C. R., C. S. Bretherton, and P. N. Blossey, 2014: Fast stratocumulus time scale in mixed layer model and large eddy simulation. J. Adv. Model. Earth Syst., 6, 206222, doi:10.1002/2013MS000289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155, doi:10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshiro, T., and M. Shiotani, 2014: Relationship between low stratiform cloud amount and estimated inversion strength in the lower troposphere over the global ocean in terms of cloud types. J. Meteor. Soc. Japan, 92, 107120, doi:10.2151/jmsj.2014-107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. E. Waliser, J. L. Li, and X. Jiang, 2012: On the annual cycle, variability, and correlations of oceanic low-topped clouds with large-scale circulation using Aqua MODIS and ERA-Interim. J. Climate, 25, 61526174, doi:10.1175/JCLI-D-11-00478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., J. Huang, K. Stamnes, T. Wang, Q. Lv, and H. Jin, 2015: A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys., 15, 519536, doi:10.5194/acp-15-519-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2009: Stabilization of the atmospheric boundary layer and the muted global hydrological cycle response to global warming. J. Hydrometeor., 10, 347352, doi:10.1175/2008JHM1058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddux, B. C., S. A. Ackerman, and S. Platnick, 2010: Viewing geometry dependencies in MODIS cloud products. J. Atmos. Oceanic Technol., 27, 15191528, doi:10.1175/2010JTECHA1432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauger, G. S., and J. R. Norris, 2010: Assessing the impact of meteorological history on subtropical cloud fraction. J. Climate, 23, 29262940, doi:10.1175/2010JCLI3272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014: Observed Southern Ocean cloud properties and shortwave reflection. Part I: Calculation of SW flux from observed cloud properties. J. Climate, 27, 88368857, doi:10.1175/JCLI-D-14-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, doi:10.1175/JCLI-D-12-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2015: On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Climate, 28, 29452967, doi:10.1175/JCLI-D-14-00475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2016: Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett., 43, 21442148, doi:10.1002/2015GL067416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., A. Higurashi, K. Kawamoto, and J. E. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28, 11711174, doi:10.1029/2000GL012186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 19151925, doi:10.1175/1520-0442(1994)007<1915:IVISCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, doi:10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., 2005: The impact of subsampling on MODIS level-3 statistics of cloud optical thickness and effective radius. IEEE Trans. Geosci. Remote Sens., 43, 366373, doi:10.1109/TGRS.2004.841247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. Klein, and P. Caldwell, 2014a: The strength of the tropical inversion and its response to climate change in 18 CMIP5 models. Climate Dyn., 45, 375396, doi:10.1007/s00382-014-2441-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. Klein, and P. Caldwell, 2014b: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 26032626, doi:10.1007/s00382-013-1945-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. Klein, and A. DeAngelis, 2015: Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42, 77677775, doi:10.1002/2015GL065627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quaas, J., 2012: Evaluating the “critical relative humidity” as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data. J. Geophys. Res., 117, D09208, doi:10.1029/2012JD017495.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1984: Stratocumulus cloud deepening through entrainment. Tellus, 36A, 446457, doi:10.1111/j.1600-0870.1984.tb00261.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., and S.-P. Xie, 2008: Muted precipitation increase in global warming simulations: A surface evaporation perspective. J. Geophys. Res., 113, D24118, doi:10.1029/2008JD010561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieck, M., L. Nuijens, and B. Stevens, 2012: Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J. Atmos. Sci., 69, 25382550, doi:10.1175/JAS-D-11-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, S. H., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci., 29, 14131422, doi:10.1175/1520-0469(1972)029<1413:CAAGCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seethala, C., J. R. Norris, and T. A. Myers, 2015: How has subtropical stratocumulus and associated meteorology changed since the 1980s? J. Climate, 28, 83968410, doi:10.1175/JCLI-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409, doi:10.1109/TGRS.2002.808236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., J. M. Blaisdell, and L. Iredell, 2014: Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version-6 retrieval algorithm. J. Appl. Remote Sens., 8, 084994, doi:10.1117/1.JRS.8.084994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Dussen, J. J., S. R. de Roode, S. D. Gesso, and A. P. Siebesma, 2015: An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation. J. Adv. Model. Earth Syst., 7, 670691, doi:10.1002/2014MS000380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vial, J., J. L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., F. Lambert, and J. M. Gregory, 2013: Origins of differences in climate sensitivity, forcing and feedback in climate models. Climate Dyn., 40, 677707, doi:10.1007/s00382-012-1336-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wold, S., A. Ruhe, H. Wold, and I. W. Dunn, 1984: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput., 5, 735743, doi:10.1137/0905052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wold, S., M. Sjöström, and L. Eriksson, 2001: PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst., 58, 109130, doi:10.1016/S0169-7439(01)00155-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669, doi:10.1175/JAS3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., B. H. Kahn, H. Xiao, M. M. Schreier, E. J. Fetzer, J. Teixeira, and K. Sušelj, 2013: Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model. J. Geophys. Res. Atmos., 118, 85988611, doi:10.1002/jgrd.50676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754, doi:10.1175/JCLI-D-11-00249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb, J. M. Gregory, and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, doi:10.1175/JCLI-D-12-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, A. E. Dessler, and S. A. Klein, 2015: The relationship between interannual and long-term cloud feedbacks. Geophys. Res. Lett., 42, 10 46310 469, doi:10.1002/2015GL066698.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1531 349 19
PDF Downloads 1130 219 15