On the Response of the Aleutian Low to Greenhouse Warming

Bolan Gan Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Bolan Gan in
Current site
Google Scholar
PubMed
Close
,
Lixin Wu Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
,
Fan Jia Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Fan Jia in
Current site
Google Scholar
PubMed
Close
,
Shujun Li Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shujun Li in
Current site
Google Scholar
PubMed
Close
,
Wenju Cai Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
CSIRO Oceans and Atmosphere Flagship, Aspendale, Victoria, Australia

Search for other papers by Wenju Cai in
Current site
Google Scholar
PubMed
Close
,
Hisashi Nakamura Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

Search for other papers by Hisashi Nakamura in
Current site
Google Scholar
PubMed
Close
,
Michael A. Alexander NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael A. Alexander in
Current site
Google Scholar
PubMed
Close
, and
Arthur J. Miller Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Arthur J. Miller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Past and future changes in the Aleutian low are investigated by using observation-based sea level pressure (SLP) datasets and CMIP5 models. It is found that the Aleutian low intensity, measured by the North Pacific Index (NPI), has significantly strengthened during the twentieth century, with the observed centennial trend double the modeled counterpart for the multimodel average of historical simulations, suggesting compound signals of anthropogenic warming and natural variability. As climate warms under the strongest future warming scenario, the climatological-mean Aleutian low will continue to intensify and expand northward, as manifested in the significant decrease (−1.3 hPa) of the multimodel-averaged NPI, which is 1.6 times its unforced internal variability, and the increase in the central area of low pressure (SLP < 999.0 hPa), which expands about 7 times that in the twentieth century. A suite of idealized experiments further demonstrates that the deepening of the Aleutian low can be driven by an El Niño–like warming of the tropical Pacific sea surface temperature (SST), with a reduction in the climatological-mean zonal SST gradient, which overshadows the dampening effect of a weakened wintertime land–ocean thermal contrast on the Aleutian low change in a warmer climate. While the projected deepening of Aleutian low on multimodel average is robust, individual model portrayals vary primarily in magnitude. Intermodel difference in surface warming amplitude over the Asian continent, which is found to explain about 31% of the variance of the NPI changes across models, has a greater contribution than that in the spatial pattern of tropical Pacific SST warming (which explains about 23%) to model uncertainty in the projection of Aleutian low intensity.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Bolan Gan, gbl0203@ouc.edu.cn

Abstract

Past and future changes in the Aleutian low are investigated by using observation-based sea level pressure (SLP) datasets and CMIP5 models. It is found that the Aleutian low intensity, measured by the North Pacific Index (NPI), has significantly strengthened during the twentieth century, with the observed centennial trend double the modeled counterpart for the multimodel average of historical simulations, suggesting compound signals of anthropogenic warming and natural variability. As climate warms under the strongest future warming scenario, the climatological-mean Aleutian low will continue to intensify and expand northward, as manifested in the significant decrease (−1.3 hPa) of the multimodel-averaged NPI, which is 1.6 times its unforced internal variability, and the increase in the central area of low pressure (SLP < 999.0 hPa), which expands about 7 times that in the twentieth century. A suite of idealized experiments further demonstrates that the deepening of the Aleutian low can be driven by an El Niño–like warming of the tropical Pacific sea surface temperature (SST), with a reduction in the climatological-mean zonal SST gradient, which overshadows the dampening effect of a weakened wintertime land–ocean thermal contrast on the Aleutian low change in a warmer climate. While the projected deepening of Aleutian low on multimodel average is robust, individual model portrayals vary primarily in magnitude. Intermodel difference in surface warming amplitude over the Asian continent, which is found to explain about 31% of the variance of the NPI changes across models, has a greater contribution than that in the spatial pattern of tropical Pacific SST warming (which explains about 23%) to model uncertainty in the projection of Aleutian low intensity.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Bolan Gan, gbl0203@ouc.edu.cn
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, doi:10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, S.-I., J.-W. Kim, S.-H. Im, B.-M. Kim, and J.-H. Park, 2012: Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Climate Dyn., 39, 13731383, doi:10.1007/s00382-011-1129-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Elsevier, 489 pp.

  • Boer, G. J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate to the twenty-first century. Climate Dyn., 16, 427450, doi:10.1007/s003820050338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., J. Ryan, S. E. Lluch-Cota, and C. M. Ñiquen, 2003: From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science, 299, 217221, doi:10.1126/science.1075880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Fang, and P. Chang, 2008: Interhemispheric thermal gradient and tropical Pacific climate. Geophys. Res. Lett., 35, L14704, doi:10.1029/2008GL034166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M. R., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmospheric Model version 3: CAM3. J. Climate, 19, 21442161, doi:10.1175/JCLI3760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, doi:10.1029/1999GL011140.

  • Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twenty-first-century projections. J. Climate, 26, 49304946, doi:10.1175/JCLI-D-12-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396413, doi:10.1175/2008JCLI2453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010a: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. A. Alexander, and D. Lawrence, 2010b: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 21492157, doi:10.1002/2016GL067792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Y., 2005: A coupled model study of the remote influence of ENSO on tropical Atlantic SST variability. Ph.D. thesis, Texas A&M University, 93 pp.

  • Furtado, J. C., E. Di Lorenzo, N. Schneider, and N. A. Bond, 2011: North Pacific decadal variability and climate change in the IPCC AR4 models. J. Climate, 24, 30493067, doi:10.1175/2010JCLI3584.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., F. W. Zwiers, A. J. Weaver, and P. A. Stott, 2003: Detection of human influence on sea level pressure. Nature, 422, 292294, doi:10.1038/nature01487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., R. J. Allan, and T. J. Ansell, 2005: Detection of external influence on sea level pressure with a multi-model ensemble. Geophys. Res. Lett., 32, L19714, doi:10.1029/2005GL023640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamed, K. H., and A. R. Rao, 1998: A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol., 204, 182196, doi:10.1016/S0022-1694(97)00125-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollowed, A. B., S. R. Hare, and W. S. Wooster, 2001: Pacific Basin climate variability and patterns of northeast Pacific marine fish production. Prog. Oceanogr., 49, 257282, doi:10.1016/S0079-6611(01)00026-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., S. Yamane, and H. Nakamura, 2005: Impacts of the Aleutian–Icelandic low seesaw on the surface climate during the twentieth century. J. Climate, 18, 27932802, doi:10.1175/JCLI3419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hori, M. E., and H. Ueda, 2006: Impact of global warming on the eastern Asian winter monsoon as revealed by nine coupled atmosphere–ocean GCMs. Geophys. Res. Lett., 33, L03713, doi:10.1029/2005GL024961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., and L. Wu, 2013: A study of response of the equatorial Pacific SST to doubled-CO2 forcing in the coupled CAM–1.5-layer reduced-gravity ocean model. J. Phys. Oceanogr., 43, 12881300, doi:10.1175/JPO-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 38723889, doi:10.1175/2008JCLI2125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model version 2. J. Climate, 20, 24162433, doi:10.1175/JCLI4103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637, doi:10.1126/science.266.5185.634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehodey, P., and Coauthors, 2006: Climate variability, fish and fisheries. J. Climate, 19, 50095030, doi:10.1175/JCLI3898.1.

  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, doi:10.1038/ngeo1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., R. J. Greatbatch, and K. A. Peterson, 2004: Trend in Northern Hemisphere winter atmospheric circulation during the last half of the twentieth century. J. Climate, 17, 37453760, doi:10.1175/1520-0442(2004)017<3745:TINHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1996: El Niño–like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 5660, doi:10.1038/382056a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oshima, K., Y. Tanimoto, and S.-P. Xie, 2012: Regional patterns of wintertime SLP change over the North Pacific and their uncertainty in CMIP3 multi-model projections. J. Meteor. Soc. Japan, 90A, 385396, doi:10.2151/jmsj.2012-A23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and C. H. Pease, 1982: Cyclone climatology of the Bering Sea and its relation to sea ice extent. Mon. Wea. Rev., 110, 513, doi:10.1175/1520-0493(1982)110<0005:CCOTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. M. Adams, and N. A. Bond, 1999: Decadal variability of the Aleutian low and its relation to high-latitude circulation. J. Climate, 12, 15421548, doi:10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, doi:10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., G. W. K. Moore, A. M. Macdonald, I. A. Renfrew, J. E. Walsh, and W. S. Kessler, 2009: Seasonal evolution of Aleutian low pressure systems: Implications for the North Pacific subpolar circulation. J. Phys. Oceanogr., 39, 13171339, doi:10.1175/2008JPO3891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the 20th century. J. Climate, 29, 40834097, doi:10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., J. E. Overland, and N. A. Bond, 2005: The Aleutian low and winter climatic conditions of the Bering Sea. Part I: Classification. J. Climate, 18, 160177, doi:10.1175/JCLI3253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Jr., 2006: Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett., 33, L19820, doi:10.1029/2006GL026882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18, 43554373, doi:10.1175/JCLI3527.1.

  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 42494265, doi:10.1175/1520-0442(2001)014<4249:WDSITL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singarayer, J. S., J. L. Bamber, and P. J. Valdes, 2006: Twenty-first-century climate impacts from a declining Arctic sea ice cover. J. Climate, 19, 11091125, doi:10.1175/JCLI3649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Reconstruction of monthly mean oceanic sea level pressure based on COADS and station data (1854–1997). J. Oceanic Atmos. Technol., 21, 12721282, doi:10.1175/1520-0426(2004)021<1272:ROMMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sueyoshi, M., and T. Yasuda, 2012: Inter-model variability of projected sea level changes in the western North Pacific in CMIP3 coupled climate models. J. Oceanogr., 68, 533543, doi:10.1007/s10872-012-0117-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, doi:10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terada, K., and M. Hanzawa, 1984: Climate of the North Pacific Ocean. World Survey of Climatology, Vol. 15, H. Van Loon, Ed., Elsevier, 431–504.

  • Tokinaga, H., S.-P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, doi:10.1038/nature11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. A. Paolino, 1980: The Northern Hemisphere sea-level pressure data set: Trends, errors and discontinuities. Mon. Wea. Rev., 108, 855872, doi:10.1175/1520-0493(1980)108<0855:TNHSLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, 8183, doi:10.1029/2008EO090002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and L. Bajuk, 1996: Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Climate, 9, 249259, doi:10.1175/1520-0442(1996)009<0249:IOITIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Q. Fu, B. V. Smoliak, P. Lin, and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342, doi:10.1073/pnas.1204875109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Li, C. Yang, and S.-P. Xie, 2008: Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21, 30023019, doi:10.1175/2007JCLI1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, doi:10.1038/nclimate1353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Coauthors, 2015: Towards predictive understanding of regional climate change. Nat. Climate Change, 5, 921930, doi:10.1038/nclimate2689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO versus AO. J. Meteor. Soc. Japan, 84, 221241, doi:10.2151/jmsj.84.221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., Y.-G. Ham, and J.-Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, doi:10.1175/JCLI-D-12-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model ENSO. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2463 993 45
PDF Downloads 1431 259 11