Green Mountains and White Plains: The Effect of Northern Hemisphere Ice Sheets on the Global Energy Budget

William H. G. Roberts School of Geographical Sciences, University of Bristol, Bristol, United Kingdom

Search for other papers by William H. G. Roberts in
Current site
Google Scholar
PubMed
Close
and
Paul J. Valdes School of Geographical Sciences, University of Bristol, Bristol, United Kingdom

Search for other papers by Paul J. Valdes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The changes in the global energy budget in response to imposing an ice sheet’s topography, albedo, or topography and albedo combined are examined. The albedo of the ice sheet (here called a “White Plain”) causes an outgoing top of the atmosphere radiation anomaly over the ice sheet that is balanced by an incoming anomaly in the Southern Hemisphere. This causes a northward transport of heat across the equator that is carried equally by the ocean and atmosphere. The topography of the ice sheet (“Green Mountain”) causes an incoming radiation anomaly over the ice sheet that is balanced predominantly by an outgoing anomaly to the south of the ice sheet, with a smaller outgoing flux in the Southern Hemisphere. The heat is transported across the equator by the atmosphere alone. The combined topography and albedo of the ice sheet (“White Mountain”) cause an outgoing radiation anomaly over the ice sheet that is balanced equally by an incoming flux in the Southern Hemisphere and to the south of the ice sheet. Heat is transported across the equator by the ocean alone.

With varying ice sheet geometry generally linear relationships between the various energy fluxes and the varying height and area of the ice sheet are found. In both the White Plain and White Mountain cases the ocean is always a significant carrier of heat across the equator, and in the White Mountain case it is preeminent.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: William H. G. Roberts, william.roberts@bristol.ac.uk

Abstract

The changes in the global energy budget in response to imposing an ice sheet’s topography, albedo, or topography and albedo combined are examined. The albedo of the ice sheet (here called a “White Plain”) causes an outgoing top of the atmosphere radiation anomaly over the ice sheet that is balanced by an incoming anomaly in the Southern Hemisphere. This causes a northward transport of heat across the equator that is carried equally by the ocean and atmosphere. The topography of the ice sheet (“Green Mountain”) causes an incoming radiation anomaly over the ice sheet that is balanced predominantly by an outgoing anomaly to the south of the ice sheet, with a smaller outgoing flux in the Southern Hemisphere. The heat is transported across the equator by the atmosphere alone. The combined topography and albedo of the ice sheet (“White Mountain”) cause an outgoing radiation anomaly over the ice sheet that is balanced equally by an incoming flux in the Southern Hemisphere and to the south of the ice sheet. Heat is transported across the equator by the ocean alone.

With varying ice sheet geometry generally linear relationships between the various energy fluxes and the varying height and area of the ice sheet are found. In both the White Plain and White Mountain cases the ocean is always a significant carrier of heat across the equator, and in the White Mountain case it is preeminent.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: William H. G. Roberts, william.roberts@bristol.ac.uk
Save
  • Broccoli, A. J., and S. Manabe, 1987: The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dyn., 1, 8799, doi:10.1007/BF01054478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic intertropical convergence zone to Last Glacial Maximum boundary conditions. Paleoceanography, 18, 1094, doi:10.1029/2003PA000916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and I. M. Held, 1988: Stationary waves of the Ice Age climate. J. Climate, 1, 807819, doi:10.1175/1520-0442(1988)001<0807:SWOTIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cvijanovic, I., and J. C. H. Chiang, 2013: Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Climate Dyn., 40, 14351452, doi:10.1007/s00382-012-1482-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, doi:10.1175/JAS3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418, doi:10.1175/2011JCLI3946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, doi:10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felzer, B., R. J. Oglesby, T. Webb III, and D. E. Hyman, 1996: Sensitivity of a general circulation model to changes in Northern Hemisphere ice sheets. J. Geophys. Res., 101, 19 07719 092, doi:10.1029/96JD01219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Meteor. Monogr., Vol. 29, Amer. Geophys. Union, 130–163, doi:10.1029/GM029p0130.

    • Crossref
    • Export Citation
  • Hofer, D., C. C. Raible, A. Dehnert, and J. Kuhlemann, 2012: The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region. Climate Past, 8, 935949, doi:10.5194/cp-8-935-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., P. U. Clark, P. J. Bartlein, C. Mix, and N. J. Pisias, 1999: Atmospheric transmission of North Atlantic Heinrich events. J. Geophys. Res., 104, 39473952, doi:10.1029/1998JD200067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, C., 2000: Sensitivity of stationary wave amplitude to regional changes in Laurentide ice sheet topography in single-layer models of the atmosphere. J. Geophys. Res., 105 (D19), 24 44324 454, doi:10.1029/2000JD900377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justino, F., A. Timmermann, U. Merkel, and E. P. Souza, 2005: Synoptic reorganization of atmospheric flow during the Last Glacial Maximum. J. Climate, 18, 28262846, doi:10.1175/JCLI3403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and P. J. Valdes, 2000: Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys. Res. Lett., 27, 15151518, doi:10.1029/1999GL011274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleman, J., J. Fastook, K. Ebert, J. Nilsson, and R. Caballero, 2013: Pre-LGM Northern Hemisphere ice sheet topography. Climate Past, 9, 23652378, doi:10.5194/cp-9-2365-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J., and H. Wright, 1985: Simulation of the climate of 18,000 years BP: Results for the North American/North Atlantic/European sector and comparison with the geologic record of North America. Quat. Sci. Rev., 4, 147187, doi:10.1016/0277-3791(85)90024-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-Y., J. C. H. Chiang, and P. Chang, 2015: Tropical Pacific response to continental ice sheet topography. Climate Dyn., 44, 24292446, doi:10.1007/s00382-014-2162-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579, doi:10.1175/2007JCLI2166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and J. Broccoli, 1985: The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res., 90 (D1), 21672190, doi:10.1029/JD090iD01p02167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., C. Li, J. J. Wettstein, M. Kageyama, and K. H. Nisancioglu, 2011: The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Climate Past, 7, 10891101, doi:10.5194/cp-7-1089-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W., 2004: Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) Model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149, doi:10.1146/annurev.earth.32.082503.144359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillipps, P. J., and I. M. Held, 1994: The response to orbital perturbations in an atmospheric model coupled to a slab ocean. J. Climate, 7, 767782, doi:10.1175/1520-0442(1994)007<0767:TRTOPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., 1987: Components of the ice age circulation. J. Geophys. Res., 92 (D4), 42414281, doi:10.1029/JD092iD04p04241.

  • Roberts, W. H. G., P. J. Valdes, and A. J. Payne, 2014: Topography’s crucial role in Heinrich events. Proc. Natl. Acad. Sci. USA, 111, 16 68816 693, doi:10.1073/pnas.1414882111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, H., R. Sutton, and J. M. Slingo, 2007: El Niño in a coupled climate model: Sensitivity to changes in mean state induced by heat flux and wind stress corrections. J. Climate, 20, 22732298, doi:10.1175/JCLI4111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, C. R., L. Tarasov, and A. S. Dyke, 2012: Dynamics of the North American Ice Sheet Complex during its inception and build-up to the Last Glacial Maximum. Quat. Sci. Rev., 50, 86104, doi:10.1016/j.quascirev.2012.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., M. Collins, and J. Brown, 2008: The variation of ENSO characteristics associated with atmospheric parameter perturbations in a coupled model. Climate Dyn., 30, 643656, doi:10.1007/s00382-007-0313-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. J., A. N. Legrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi, 2014: Assessing the impact of Laurentide ice sheet topography on glacial climate. Climate Past, 10, 487507, doi:10.5194/cp-10-487-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, doi:10.1175/2008JCLI2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Lohmann, G. Knorr, and C. Purcell, 2014: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, doi:10.1038/nature13592.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1495 1115 355
PDF Downloads 233 50 4