Responses of Basal Melting of Antarctic Ice Shelves to the Climatic Forcing of the Last Glacial Maximum and CO2 Doubling

Takashi Obase Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Takashi Obase in
Current site
Google Scholar
PubMed
Close
,
Ayako Abe-Ouchi Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Ayako Abe-Ouchi in
Current site
Google Scholar
PubMed
Close
,
Kazuya Kusahara Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia, and Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Kazuya Kusahara in
Current site
Google Scholar
PubMed
Close
,
Hiroyasu Hasumi Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Hiroyasu Hasumi in
Current site
Google Scholar
PubMed
Close
, and
Rumi Ohgaito Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Rumi Ohgaito in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Basal melting of the Antarctic ice shelves is an important factor in determining the stability of the Antarctic ice sheet. This study used the climatic outputs of an atmosphere–ocean general circulation model to force a circumpolar ocean model that resolves ice shelf cavity circulation to investigate the response of Antarctic ice shelf melting to different climatic conditions (i.e., to a doubling of CO2 and to the Last Glacial Maximum conditions). Sensitivity experiments were also conducted to investigate the roles of both surface atmospheric change and changes of oceanic lateral boundary conditions. It was found that the rate of change of basal melt due to climate warming is much greater (by an order of magnitude) than that due to cooling. This is mainly because the intrusion of warm water onto the continental shelves, linked to sea ice production and climate change, is crucial in determining the basal melt rate of many ice shelves. Sensitivity experiments showed that changes of atmospheric heat flux and ocean temperature are both important for warm and cold climates. The offshore wind change, together with atmospheric heat flux change, strongly affected the production of both sea ice and high-density water, preventing warmer water approaching the ice shelves under a colder climate. These results reflect the importance of both water mass formation in the Antarctic shelf seas and subsurface ocean temperature in understanding the long-term response to climate change of the melting of Antarctic ice shelves.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Takashi Obase, obase@aori.u-tokyo.ac.jp

Abstract

Basal melting of the Antarctic ice shelves is an important factor in determining the stability of the Antarctic ice sheet. This study used the climatic outputs of an atmosphere–ocean general circulation model to force a circumpolar ocean model that resolves ice shelf cavity circulation to investigate the response of Antarctic ice shelf melting to different climatic conditions (i.e., to a doubling of CO2 and to the Last Glacial Maximum conditions). Sensitivity experiments were also conducted to investigate the roles of both surface atmospheric change and changes of oceanic lateral boundary conditions. It was found that the rate of change of basal melt due to climate warming is much greater (by an order of magnitude) than that due to cooling. This is mainly because the intrusion of warm water onto the continental shelves, linked to sea ice production and climate change, is crucial in determining the basal melt rate of many ice shelves. Sensitivity experiments showed that changes of atmospheric heat flux and ocean temperature are both important for warm and cold climates. The offshore wind change, together with atmospheric heat flux change, strongly affected the production of both sea ice and high-density water, preventing warmer water approaching the ice shelves under a colder climate. These results reflect the importance of both water mass formation in the Antarctic shelf seas and subsurface ocean temperature in understanding the long-term response to climate change of the melting of Antarctic ice shelves.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Takashi Obase, obase@aori.u-tokyo.ac.jp
Save
  • Abe-Ouchi, A., F. Saito, K. Kawamura, M. E. Raymo, J. Okuno, K. Takahashi, and H. Blatter, 2013: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature, 500, 190193, doi:10.1038/nature12374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abe-Ouchi, A., and Coauthors, 2015: Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geosci. Model Dev., 8, 36213637, doi:10.5194/gmd-8-3621-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and H. Goosse, 2003: A parameterization of ice shelf–ocean interaction for climate models. Ocean Modell., 5, 157170, doi:10.1016/S1463-5003(02)00019-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, M. J., and Coauthors, 2014: A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev., 100, 19, doi:10.1016/j.quascirev.2014.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindschadler, R. A., and Coauthors, 2013: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol., 59, 195224, doi:10.3189/2013JoG12J125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. Drijfhout, B. Wouters, and C. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, and C. A. Katsman, 2015: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol., 56, 120126, doi:10.3189/2015AoG69A001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, doi:10.5194/cp-3-261-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417424, doi:10.1038/nclimate1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, M. O., A. Abe-Ouchi, A. Oka, R. Ohgaito, and A. Timmermann, 2012: Quantifying the ocean’s role in glacial CO2 reductions. Climate Past, 8, 545563, doi:10.5194/cp-8-545-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1137–1216.

  • Clark, P. U., and Coauthors, 2016: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Climate Change, 6, 360369, doi:10.1038/nclimate2923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, C. P., and Coauthors, 2013: Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci., 6, 765769, doi:10.1038/ngeo1889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, B., R. S. W. van de Wal, L. J. Lourens, R. Bintanja, and T. J. Reerink, 2013: A continuous simulation of global ice volume over the past 1 million years with 3-D ice sheet models. Climate Dyn., 41, 13651384, doi:10.1007/s00382-012-1562-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, B., and Coauthors, 2015: Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere, 9, 881903, doi:10.5194/tc-9-881-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deconto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597, doi:10.1038/nature17145.

  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, doi:10.1038/nature12567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and W. O. Smith, 2011: A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Res. II, 58, 15081523, doi:10.1016/j.dsr2.2010.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, L.-S. Bai, D. H. Bromwich, K. M. Hines, and D. M. Holland, 2015: The effect of atmospheric forcing resolution on delivery of ocean heat to the Antarctic floating ice shelves. J. Climate, 28, 60676085, doi:10.1175/JCLI-D-14-00374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupont, T. K., and R. B. Alley, 2005: Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett., 32, L04503, doi:10.1029/2004GL022024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, A., and K. Lambeck, 2012: Ice volume and sea level during the last interglacial. Science, 337, 216219, doi:10.1126/science.1205749.

  • Dutton, A., and Coauthors, 2015: Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science, 349, 6244, doi:10.1126/science.aaa4019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fogwill, C. J., S. J. Phipps, C. S. M. Turney, and N. R. Golledge, 2015: Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth’s Future, 3, 317329, doi:10.1002/2015EF000306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fretwell, P., and Coauthors, 2013: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7, 375393, doi:10.5194/tc-7-375-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagliardini, O., G. Durand, T. Zwinger, R. C. A. Hindmarsh, and E. Le Meur, 2010: Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics. Geophys. Res. Lett., 37, L14501, doi:10.1029/2010GL043334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galton-Fenzi, B. K., J. R. Hunter, R. Coleman, S. J. Marsland, and R. C. Warner, 2012: Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. J. Geophys. Res., 117, C09031, doi:10.1029/2012JC008214.

    • Search Google Scholar
    • Export Citation
  • Gersonde, R., X. Crosta, A. Abelmann, and L. Armand, 2005: Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—A circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev., 24, 869896, doi:10.1016/j.quascirev.2004.07.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., C. J. Fogwill, A. N. Mackintosh, and K. M. Buckley, 2012: Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing. Proc. Natl. Acad. Sci. USA, 109, 16 05216 056, doi:10.1073/pnas.1205385109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., L. Menviel, L. Carter, C. J. Fogwill, M. H. England, G. Cortese, and R. H. Levy, 2014: Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun., 5, 5107, doi:10.1038/ncomms6107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., D. E. Kowalewski, T. R. Naish, R. H. Levy, C. J. Fogwill, and E. G. W. Gasson, 2015: The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526, 421425, doi:10.1038/nature15706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, Y., S. L. Cornford, and J. Payne, 2014: Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries. Cryosphere, 8, 10571068, doi:10.5194/tc-8-1057-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasumi, H., 2006: CCSR Ocean Component Model (COCO) version 4.0. Center for Climate System Research Rep. 25, University of Tokyo, 68 pp.

  • Hasumi, H., and S. Emori, 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research, University of Tokyo, 34 pp.

  • Hattermann, T., O. A. Nøst, J. M. Lilly, and L. H. Smedsrud, 2012: Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophys. Res. Lett., 39, L12605, doi:10.1029/2012GL051012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., L. Smedsrud, O. A. Nøst, J. Lilly, and B. Galton-Fenzi, 2014: Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean. Ocean Modell., 82, 2844, doi:10.1016/j.ocemod.2014.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., 2004: Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties. Geophys. Res. Lett., 31, L10307, doi:10.1029/2004GL019506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., and D. J. Olbers, 1989: A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci., 1, 325336, doi:10.1017/S0954102089000490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., S. Jacobs, and A. Jenkins, 1998: Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Amer. Geophys. Union, 83–99.

    • Crossref
    • Export Citation
  • Hellmer, H. H., F. Kauker, R. Timmermann, J. Determann, and J. Rae, 2012: Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature, 485, 225228, doi:10.1038/nature11064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and D. Holland, 2015: On the rocks: The challenges of predicting sea level rise. Eos, Trans. Amer. Geophys. Union, 96, doi:10.1029/2015EO036667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., A. Jenkins, and D. M. Holland, 2008: The response of ice shelf basal melting to variations in ocean temperature. J. Climate, 21, 25582572, doi:10.1175/2007JCLI1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., R. G. Fairbanks, and Y. Horibe, 1985: Origin and evolution of water masses near the Antarctic continental margin: Evidence from H218O/H216O ratios in seawater. Oceanology of the Antarctic Continental Shelf, S. S. Jacobs, Ed., Amer. Geophys. Union, 59–85.

    • Crossref
    • Export Citation
  • Jacobs, S. S., H. H. Helmer, C. S. M. Doake, A. Jenkins, and R. M. Frolich, 1992: Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38, 375387, doi:10.1017/S0022143000002252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., H. H. Hellmer, and A. Jenkins, 1996: Antarctic Ice Sheet melting in the southeast Pacific. Geophys. Res. Lett., 23, 957960, doi:10.1029/96GL00723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, doi:10.1038/ngeo1188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., and S. Jacobs, 2008: Circulation and melting beneath George VI ice shelf, Antarctica. J. Geophys. Res., 113, C04013, doi:10.1029/2007JC004449.

    • Search Google Scholar
    • Export Citation
  • Kawamura, K., and Coauthors, 2017: State dependence of climatic instability over the past 720,000 years from Antarctic ice-core records and climate modeling. Sci. Adv., 3, e1600446, doi:10.1126/sciadv.1600446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopp, R. E., F. J. Simons, J. X. Mitrovica, A. C. Maloof, and M. Oppenheimer, 2009: Probabilistic assessment of sea level during the last interglacial stage. Nature, 462, 863867, doi:10.1038/nature08686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusahara, K., 2016: Warming ocean erodes ice sheets. Nat. Climate Change, 6, 2223, doi:10.1038/nclimate2900.

  • Kusahara, K., and H. Hasumi, 2013: Modeling Antarctic ice shelf responses to future climate changes and impacts on the ocean. J. Geophys. Res. Oceans, 118, 24542475, doi:10.1002/jgrc.20166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusahara, K., and H. Hasumi, 2014: Pathways of basal meltwater from Antarctic ice shelves: A model study. J. Geophys. Res. Oceans, 119, 56905704, doi:10.1002/2014JC009915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusahara, K., T. Sato, A. Oka, T. Obase, R. Greve, A. Abe-Ouchi, and H. Hasumi, 2015: Modelling the Antarctic marine cryosphere at the Last Glacial Maximum. Ann. Glaciol., 56, 425435, doi:10.3189/2015AoG69A792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Losch, M., 2008: Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res., 113, C08043, doi:10.1029/2007JC004368.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., K. Bryan, and M. J. Spelman, 1990: Transient response of a global ocean–atmosphere model to a doubling of atmospheric carbon dioxide. J. Phys. Oceanogr., 20, 722749, doi:10.1175/1520-0485(1990)020<0722:TROAGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2013: Information from paleoclimate archives. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 383–464.

  • McKay, R. M., P. J. Barrett, R. S. Levy, T. R. Naish, N. R. Golledge, and A. Payne, 2016: Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Philos. Trans. Roy. Soc. London, 374A, 20140301, doi:10.1098/rsta.2014.0301.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and L. Kantha, 1989: An ice–ocean coupled model. J. Geophys. Res., 94, 10 93710 954, doi:10.1029/JC094iC08p10937.

  • Mengel, M., and A. Levermann, 2014: Ice plug prevents irreversible discharge from East Antarctica. Nat. Climate Change, 4, 451455, doi:10.1038/nclimate2226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mengel, M., J. Feldmann, and A. Levermann, 2015: Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin. Nat. Climate Change, 6, 7174, doi:10.1038/nclimate2808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menviel, L., A. Timmermann, O. E. Timm, and A. Mouchet, 2011: Deconstructing the Last Glacial termination: The role of millennial and orbital-scale forcings. Quat. Sci. Rev., 30, 11551172, doi:10.1016/j.quascirev.2011.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. D., J. F. Adkins, D. Menemenlis, and M. P. Schodlok, 2012: The role of ocean cooling in setting glacial southern source bottom water salinity. Paleoceanography, 27, PA3207, doi:10.1029/2012PA002297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morales Maqueda, M. A., A. J. Willmott, and N. R. T. Biggs, 2004: Polynya dynamics: A review of observations and modeling. Rev. Geophys., 42, RG1004, doi:10.1029/2002RG000116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naish, T., and Coauthors, 2009: Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458, 322328, doi:10.1038/nature07867.

  • Nakayama, Y., R. Timmermann, C. B. Rodehacke, M. Schröder, and H. H. Hellmer, 2014a: Modeling the spreading of glacial melt water from the Amundsen and Bellingshausen Seas. Geophys. Res. Lett., 41, 79427949, doi:10.1002/2014GL061600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., R. Timmermann, M. Schröder, and H. H. Hellmer, 2014b: On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf. Ocean Modell., 84, 2634, doi:10.1016/j.ocemod.2014.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., 1997: Predicted reduction in basal melt rates of an Antarctic ice shelf in a warmer climate. Nature, 388, 460462, doi:10.1038/41302.

  • Nøst, O. A., M. Biuw, V. Tverberg, C. Lydersen, T. Hattermann, Q. Zhou, L. H. Smedsrud, and K. M. Kovacs, 2011: Eddy overturning of the Antarctic Slope Front controls glacial melting in the eastern Weddell Sea. J. Geophys. Res., 116, C11014, doi:10.1029/2011JC006965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, A., A. Abe-Ouchi, M. O. Chikamoto, and T. Ide, 2011: Mechanisms controlling export production at the LGM: Effects of changes in oceanic physical fields and atmospheric dust deposition. Global Biogeochem. Cycles, 25, GB2009, doi:10.1029/2009GB003628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrenin, F., and Coauthors, 2007: 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica. Climate Past, 3, 243259, doi:10.5194/cp-3-243-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauling, A. G., C. M. Bitz, I. J. Smith, and P. J. Langhorne, 2016: The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an Earth system model. J. Climate, 29, 16551672, doi:10.1175/JCLI-D-15-0501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., D. F. Argus, and R. Drummond, 2015: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G-C (VM5a) model. J. Geophys. Res. Solid Earth, 120, 450487, doi:10.1002/2014JB011176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, A. A., D. L. Feltham, and P. R. Holland, 2013: Impact of atmospheric forcing on Antarctic continental shelf water masses. J. Phys. Oceanogr., 43, 920940, doi:10.1175/JPO-D-12-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., and R. M. DeConto, 2009: Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458, 329332, doi:10.1038/nature07809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., R. J. Arthern, D. G. Vaughan, and L. A. Edwards, 2009: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971975, doi:10.1038/nature08471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., S. Ligtenberg, H. Fricker, D. Vaughan, M. van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505, doi:10.1038/nature10968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and S. S. Jacobs, 2002: Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines. Science, 296, 20202023, doi:10.1126/science.1070942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, doi:10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roche, D. M., X. Crosta, and H. Renssen, 2012: Evaluating Southern Ocean sea-ice for the Last Glacial Maximum and pre-industrial climates: PMIP-2 models and data evidence. Quat. Sci. Rev., 56, 99106, doi:10.1016/j.quascirev.2012.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rojas, M., and Coauthors, 2009: The southern westerlies during the last glacial maximum in PMIP2 simulations. Climate Dyn., 32, 525548, doi:10.1007/s00382-008-0421-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röske, F., 2006: A global heat and freshwater forcing dataset for ocean models. Ocean Modell., 11, 235297, doi:10.1016/j.ocemod.2004.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., and R. Greve, 2012: Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Ann. Glaciol., 53, 221228, doi:10.3189/2012AoG60A042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoof, C., 2006: A variational approach to ice stream flow. J. Fluid Mech., 556, 227251, doi:10.1017/S0022112006009591.

  • Schoof, C., 2007: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., A. Jenkins, D. M. Holland, and O. A. Nøst, 2006: Modeling ocean processes below Fimbulisen, Antarctica. J. Geophys. Res., 111, C01007, doi:10.1029/2005JC002915.

    • Search Google Scholar
    • Export Citation
  • Spence, P., S. M. Griffies, M. H. England, A. M. C. Hogg, O. A. Saenko, and N. C. Jourdain, 2014: Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett., 41, 46014610, doi:10.1002/2014GL060613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Laurent, P., J. M. Klinck, and M. S. Dinniman, 2013: On the role of coastal troughs in the circulation of warm Circumpolar Deep Water on Antarctic shelves. J. Phys. Oceanogr., 43, 5164, doi:10.1175/JPO-D-11-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., D. Seidov, and B. J. Haupt, 2007: Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J. Climate, 20, 436448, doi:10.1175/JCLI4015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suganuma, Y., H. Miura, A. Zondervan, and J. Okuno, 2014: East Antarctic deglaciation and the link to global cooling during the Quaternary: Evidence from glacial geomorphology and 10Be surface exposure dating of the Sør Rondane Mountains, Dronning Maud Land. Quat. Sci. Rev., 97, 102120, doi:10.1016/j.quascirev.2014.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutter, J., P. Gierz, K. Grosfeld, M. Thoma, and G. Lohmann, 2016: Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett., 43, 26752682, doi:10.1002/2016GL067818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talbot, M. H., 1988: Oceanic environment of George VI ice shelf, Antarctic Peninsula. Ann. Glaciol., 11, 161164, doi:10.1017/S0260305500006480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, T., K. I. Ohshima, and S. Nihashi, 2008: Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35, L07606, doi:10.1029/2007GL032903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thoma, M., A. Jenkins, D. Holland, and S. Jacobs, 2008: Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35, L18602, doi:10.1029/2008GL034939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and H. H. Hellmer, 2013: Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite element modelling. Ocean Dyn., 63, 10111026, doi:10.1007/s10236-013-0642-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., Q. Wang, and H. H. Hellmer, 2012: Ice shelf basal melting in a global finite element sea ice–ice shelf–ocean model. Ann. Glaciol., 53, 303314, doi:10.3189/2012AoG60A156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velicogna, I., 2009: Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett., 36, L19503, doi:10.1029/2009GL040222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C. and Coauthors, 2009: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci., 2, 127132, doi:10.1038/ngeo411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, R. T., T. K. Dupont, B. R. Parizek, and R. B. Alley, 2008: Effects of basal-melting distribution on the retreat of ice-shelf grounding lines. Geophys. Res. Lett., 35, L17503, doi:10.1029/2008GL034947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weertman, J., 1974: Stability of the junction of an ice sheet and an ice shelf. J. Glaciol., 13, 311, doi:10.1017/S0022143000023327.

  • Whitworth, T., A. H. Orsi, S. J. Kim, and W. D. Nowlin Jr., 1998: Water masses and mixing near the Antarctic Slope Front. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Amer. Geophys. Union, 1–27.

    • Crossref
    • Export Citation
  • Williams, M. M., I. R. C. Warner, and W. F. Budd, 1998: The effects of ocean warming on melting and ocean circulation under the Arnery Ice Shelf, East Antarctica. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Amer. Geophys. Union, 75–80.

    • Crossref
    • Export Citation
  • Yamamoto, A., A. Abe-Ouchi, M. Shigemitsu, A. Oka, K. Takahashi, R. Ohgaito, and Y. Yamanaka, 2015: Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming. Global Biogeochem. Cycles, 29, 18011815, doi:10.1002/2015GB005181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamane, M., Y. Yokoyama, A. Abe-Ouchi, S. Obrochta, F. Saito, K. Moriwaki, and H. Matsuzaki, 2015: Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics. Nat. Commun., 6, 7016, doi:10.1038/ncomms8016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., T. Yokohata, and A. Abe-Ouchi, 2009: A comparison of climate feedback strength between CO2 doubling and LGM experiments. J. Climate, 22, 33743395, doi:10.1175/2009JCLI2801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation