Contribution of Tropical Cyclones to Rainfall in the Philippines

Gerry Bagtasa Institute of Environmental Science and Meteorology, University of the Philippines, Quezon City, Philippines

Search for other papers by Gerry Bagtasa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclone (TC)-induced rainfall (TC rain) in the Philippines was investigated using a combination of ground and satellite observations to produce a blended 64-yr precipitation dataset. A total of 1673 TCs were examined using best track data from the Japan Meteorological Agency. Rainfall from 100 (~1110 km) of the TC center was considered as TC-induced rainfall. TC rain contribution is highest in the northern Philippines, particularly along the western coast of Luzon (up to 54%), and lowest in the southern islands of Mindanao (6%). The high TC rain contribution is attributed to the enhancement of the Asian southwest monsoon by TCs located to the northeast of the Philippines. An unsupervised clustering method, k-means clustering, was used to divide the archipelago into four climate subtypes according to monthly rainfall variation. Interannual variability of rainfall from climate clusters with high TC rain contribution generally follows the variability of TC rain. On the other hand, the variability of low TC rain clusters is mainly influenced by El Niño–Southern Oscillation (ENSO). All clusters show increasing trends of 16.9%–19.3% decade−1 in TC rain percentage contribution since 2000. This study hypothesizes that this increasing trend is due to changes in the characteristics of TC steering mechanisms and thermodynamic properties east of the Philippines in the past one and a half decades.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Gerry Bagtasa, gbagtasa@iesm.upd.edu.ph

Abstract

Tropical cyclone (TC)-induced rainfall (TC rain) in the Philippines was investigated using a combination of ground and satellite observations to produce a blended 64-yr precipitation dataset. A total of 1673 TCs were examined using best track data from the Japan Meteorological Agency. Rainfall from 100 (~1110 km) of the TC center was considered as TC-induced rainfall. TC rain contribution is highest in the northern Philippines, particularly along the western coast of Luzon (up to 54%), and lowest in the southern islands of Mindanao (6%). The high TC rain contribution is attributed to the enhancement of the Asian southwest monsoon by TCs located to the northeast of the Philippines. An unsupervised clustering method, k-means clustering, was used to divide the archipelago into four climate subtypes according to monthly rainfall variation. Interannual variability of rainfall from climate clusters with high TC rain contribution generally follows the variability of TC rain. On the other hand, the variability of low TC rain clusters is mainly influenced by El Niño–Southern Oscillation (ENSO). All clusters show increasing trends of 16.9%–19.3% decade−1 in TC rain percentage contribution since 2000. This study hypothesizes that this increasing trend is due to changes in the characteristics of TC steering mechanisms and thermodynamic properties east of the Philippines in the past one and a half decades.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Gerry Bagtasa, gbagtasa@iesm.upd.edu.ph
Save
  • Akasaka, I., W. Morishima, and T. Mikami, 2007: Seasonal march and its spatial difference of rainfall in the Philippines. Int. J. Climatol., 27, 7157252, doi:10.1002/joc.1428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asuncion, J., and A. Jose, 1980: A study of the characteristics of the northeast and southwest monsoons in the Philippines. National Research Council of the Philippines Assisted Project, 49 pp. [Available from Philippine Atmospheric Geophysical and Astronomical Services Administration, Agham Road, Dillman, Quezon City, Metro Manila 1100, Philippines.]

  • Atkinson, G., 1977: Proposed system for near real time monitoring of global tropical circulation and weather patterns. Preprints, 11th Tech. Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 645–652.

  • Breña-Naranjo, J. A., A. Pedrozo-Acuña, O. Pozos-Estrada, S. A. Jimenez-Lopez, and M. R. Lopez-Lopez, 2015: The contribution of tropical cyclones to rainfall in Mexico. Phys. Chem. Earth, 83–84, 111122, doi:10.1016/j.pce.2015.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C., M. Peters, and L. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S., and A. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, doi:10.1175/JCLI3457.1.

  • Cayanan, E. O., T.-C. Chen, J. C. Argete, M.-C. Yen, and P. D. Nilo, 2011: The effect of tropical cyclones on southwest monsoon rainfall in the Philippines. J. Meteor. Soc. Japan, 89A, 123139, doi:10.2151/jmsj.2011-A08.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, doi:10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, doi:10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc. London, 464A, 249272, doi:10.1098/rspa.2007.0183.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Z. Wang, J. McBride, and C.-H. Liu, 2005: Annual cycle of Southeast Asia maritime continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, doi:10.1175/JCLI-3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cinco, T. A., R. G. de Guzman, F. D. Hilario, and D. M. Wilson, 2014: Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951–2010. Atmos. Res., 145–146, 1226, doi:10.1016/j.atmosres.2014.03.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cinco, T. A., and Coauthors, 2016: Observed trends and impacts of tropical cyclones in the Philippines. Int. J. Climatol., 36, 46384650, doi:10.1002/joc.4659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., G. J. Perez, and L. V. Stock, 2015: Enhanced Pacific Ocean sea surface temperature and its relation to Typhoon Haiyan. J. Environ. Sci. Manage., 18 (1), 110.

    • Search Google Scholar
    • Export Citation
  • Coronas, J., 1912: The extraordinary drought in the Philippines: October, 1911, to May, 1912. Weather Bureau, Department of the Interior, Government of the Philippine Islands, 19 pp.

  • Corporal-Lodangco, I., and L. Leslie, 2016: Impacts of ENSO on Philippine tropical cyclone activity. J. Climate, 29, 18771897, doi:10.1175/JCLI-D-14-00723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, F. T., G. T. Narisma, M. Q. Villafuerte, K. U. Chen Chua, and L. M. Olaguera, 2013: A climatological analysis of the southwest monsoon rainfall in the Philippines. Atmos. Res., 122, 609616, doi:10.1016/j.atmosres.2012.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

  • Dare, R., N. Davidson, and J. McBride, 2012: Tropical cyclone contribution to rainfall over Australia. Mon. Wea. Rev., 140, 36063619, doi:10.1175/MWR-D-11-00340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • David, C., B. Racoma, J. Gonzales, and M. Clutario, 2013: A manifestation of climate change? A look at Typhoon Yolanda in relation to the historical tropical cyclone archive. Sci. Diliman, 25, 7986.

    • Search Google Scholar
    • Export Citation
  • Durre, I., C. N. Williams Jr., X. Yin, and R. S. Vose, 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geol. Res., 114, 18, doi:10.1029/2008JD010989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Everitt, B., S. Landau, and M. Leese, 2001: Cluster Analysis. 4th ed. Oxford University Press, 237 pp.

  • Fatjo, S. J., and F. H. Wells, Eds., 1986: Annual tropical cyclone report. U.S. Naval Oceanography Command Center, JTWC, 193 pp.

  • Flores, J., and V. Balagot, 1969: Climate of the Philippines. Climates of Northern and Eastern Asia, H. Arakawa, Ed., World Survey of Climatology, Vol. 8. Elsevier, 159–213 pp.

  • Hilario, F., R. de Guzman, D. Ortega, and P. Hayman, 2009: El Niño southern oscillation in the Philippines: Impacts, forecasts, and risk management. Philipp. J. Dev., 36, 934.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., J. B. Halverson, J. Simpson, and E. Zipser, 2008: Hurricane “rain potential” derived from satellite observations aids overland rain prediction. J. Appl. Meteor. Climatol., 47, 944959, doi:10.1175/2007JAMC1619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2013: JRA-55: Japanese 55-year Reanalysis, daily 3-hourly and 6-hourly data. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 6 June 2016, doi:10.5065/D6HH6H41.

    • Crossref
    • Export Citation
  • Kubota, H., and B. Wang, 2009: How much do tropical cyclones affect seasonal and interannual rainfall variability over the western North Pacific? J. Climate, 22, 54955510, doi:10.1175/2009JCLI2646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagmay, A., G. Bagtasa, I. Crisologo, B. Racoma, and C. David, 2015: Volcanoes magnify Metro Manila’s southwest monsoon rains and lethal floods. Front. Earth Sci., 2, 19, doi:10.3389/feart.2014.00036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., M. Zhao, and M. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun., 6, 6591, doi:10.1038/ncomms7591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, M. Cane, S. Yim, and J. Lee, 2013: Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493, 656659, doi:10.1038/nature11784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2015: Evaluation of precipitation climatology derived from TRMM Multi-Satellite Precipitation Analysis (TMPA) monthly product over land with two gauge-based products. Climate, 3, 964982, doi:10.3390/cli3040964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and S. Camargo, 2009: The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dyn., 32, 125141, doi:10.1007/s00382-008-0380-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., H. Cristi, E. Verceles, F. Hilario, and R. Abastillas, 2006: Seasonal reversal of the ENSO rainfall signal in the Philippines. J. Geophys. Res., 33, L24710, doi:10.1029/2006GL028182.

    • Search Google Scholar
    • Export Citation
  • Matyas, C., 2010: Associations between the size of hurricane rain fields at landfall and their surrounding environments. Meteor. Atmos. Phys., 106, 135148, doi:10.1007/s00703-009-0056-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, M., P. Thorne, and H. Titchner, 2009: An analysis of tropospheric humidity trends from radiosondes. J. Climate, 22, 58205838, doi:10.1175/2009JCLI2879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., S. Xie, F. Primeau, J. McWilliams, and C. Pasquero, 2015: Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv., 1, e1500014, doi:10.1126/sciadv.1500014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. Lucero, F. Hilario, B. Lyon, A. Robertson, and D. DeWitt, 2009: Spatio-temporal variability and predictability of summer monsoon onset over the Philippines. Climate Dyn., 33, doi:10.1007/s00382-008-0520-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., G. Wu, W. Dong, X. Wang, Y. Wang, W. Ai, and W. Li, 2006: Changes in tropical cyclone precipitation over China. Geophys. Res. Lett., 33, L20702, doi:10.1029/2006GL027951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribera, P., R. Garcia-Herrera, and L. Gimeno, 2008: Historical deadly typhoons in the Philippines. Weather, 63, 194199, doi:10.1002/wea.275.

  • Ropelewski, C., and M. Halpert, 1996: Quantifying Southern Oscillation–precipitation relationships. J. Climate, 9, 10431059, doi:10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C., P. Chung, and T. Li, 2007: Interannual and interdecadal variability of the summertime western north Pacific subtropical high. Geophys. Res. Lett., 34, L11701, doi:10.1029/2006GL029204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villafuerte, M., J. Matsumoto, I. Akasaka, H. Takahashi, H. Kubota, and T. Cinco, 2014: Long-term trends and variability of rainfall extremes in the Philippines. Atmos. Res., 137, 113, doi:10.1016/j.atmosres.2013.09.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431365, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, and S. Y. Yim, 2012: Recent change of the global monsoon precipitation (1979–2008). Climate Dyn., 39, 11231135, doi:10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. J., R. F. Adler, G. J. Huffman, and D. Bolvin, 2014: An updated TRMM composite climatology of tropical rainfall and its validation. J. Climate, 27, 273284, doi:10.1175/JCLI-D-13-00331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selective interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. Holland, J. Curry, and H. Chang, 2005: Changes in tropical cyclone number, duration and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinkle, J., R. Maue, and R. Pielke, 2012: Historical global tropical cyclone landfalls. J. Climate, 25, 47294735, doi:10.1175/JCLI-D-11-00719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Bank, 2015: Employment in agriculture (% of total employment). International Labour Organization. Subset used: Philippines, accessed 16 February 2016. [Available online at http://data.worldbank.org/indicator/SL.AGR.EMPL.ZS.]

  • Wu, L., B. Wang, and S. A. Brauna, 2008: Implications of tropical cyclone power dissipation index. Int. J. Climatol., 28, 727731, doi:10.1002/joc.1573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, W. Yu, and S. Xu, 2013: How can anomalous western North Pacific Subtropical High intensify in late summer? Geophys. Res. Lett., 40, 23492354, doi:10.1002/grl.50431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasutomi, N., A. Hamada, and A. Yatagai, 2011: Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Global Environ. Res., 15, 165172.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., A. Kitoh, K. Kamiguchi, O. Arakawa, and A. Hamada, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yumul, G., C. Dimalanta, N. Servando, and N. Cruz, 2013: Abnormal weather events in 2009, increased precipitation and disastrous impacts in the Philippines. Climatic Change, 118, 715727, doi:10.1007/s10584-012-0661-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Zhou, 2011: An assessment of monsoon precipitation changes during 1901–2001. Climate Dyn., 37, 279296, doi:10.1007/s00382-011-0993-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 21992215, doi:10.1175/2008JCLI2527.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5977 1298 75
PDF Downloads 5266 1064 58