Increased Quasi Stationarity and Persistence of Winter Ural Blocking and Eurasian Extreme Cold Events in Response to Arctic Warming. Part I: Insights from Observational Analyses

Yao Yao Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yao Yao in
Current site
Google Scholar
PubMed
Close
,
Dehai Luo Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Dehai Luo in
Current site
Google Scholar
PubMed
Close
,
Aiguo Dai Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
, and
Ian Simmonds School of Earth Sciences, University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Ian Simmonds in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Part I of this study examines the relationship among winter cold anomalies over Eurasia, Ural blocking (UB), and the background conditions associated with Arctic warming over the Barents and Kara Seas (BKS) using reanalysis data. It is found that the intensity, persistence, and occurrence region of UB-related Eurasian cold anomalies depend strongly on the strength and vertical shear (VS) of the mean westerly wind (MWW) over mid–high-latitude Eurasia related to BKS warming.

Observational analysis reveals that during 1951–2015 UB days are 64% (54%) more frequent during weak MWW (VS) winters, with 26.9 (28.4) days per winter, than during strong MWW (VS) winters. During weak MWW or VS winters, as frequently observed during 2000–15, persistent and large UB-related warming is seen over the BKS together with large and widespread midlatitude Eurasian cold anomalies resulting from increased quasi stationarity and persistence of the UB. By contrast, when the MWW or VS is strong as frequently observed during 1979–99, the cold anomaly is less intense and persistent and confined to a narrow region of Europe because of a rapid westward movement of the strong UB. For this case, the BKS warming is relatively weak and less persistent. The midlatitude cold anomalies are maintained primarily by reduced downward infrared radiation (IR), while the surface heat fluxes, IR, and advection all contribute to the BKS warming. Thus, the large BKS warming since 2000 weakens the meridional temperature gradient, MWW, and VS, which increases quasi stationarity and persistence of the UB (rather than its amplitude) and then leads to more widespread Eurasian cold events and further enhances the BKS warming.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Dehai Luo, ldh@mail.iap.ac.cn

Abstract

Part I of this study examines the relationship among winter cold anomalies over Eurasia, Ural blocking (UB), and the background conditions associated with Arctic warming over the Barents and Kara Seas (BKS) using reanalysis data. It is found that the intensity, persistence, and occurrence region of UB-related Eurasian cold anomalies depend strongly on the strength and vertical shear (VS) of the mean westerly wind (MWW) over mid–high-latitude Eurasia related to BKS warming.

Observational analysis reveals that during 1951–2015 UB days are 64% (54%) more frequent during weak MWW (VS) winters, with 26.9 (28.4) days per winter, than during strong MWW (VS) winters. During weak MWW or VS winters, as frequently observed during 2000–15, persistent and large UB-related warming is seen over the BKS together with large and widespread midlatitude Eurasian cold anomalies resulting from increased quasi stationarity and persistence of the UB. By contrast, when the MWW or VS is strong as frequently observed during 1979–99, the cold anomaly is less intense and persistent and confined to a narrow region of Europe because of a rapid westward movement of the strong UB. For this case, the BKS warming is relatively weak and less persistent. The midlatitude cold anomalies are maintained primarily by reduced downward infrared radiation (IR), while the surface heat fluxes, IR, and advection all contribute to the BKS warming. Thus, the large BKS warming since 2000 weakens the meridional temperature gradient, MWW, and VS, which increases quasi stationarity and persistence of the UB (rather than its amplitude) and then leads to more widespread Eurasian cold events and further enhances the BKS warming.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Dehai Luo, ldh@mail.iap.ac.cn
Save
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, doi:10.1007/s00382-005-0018-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global-mean temperature by internal climate variability. Nat. Climate Change, 5, 555559, doi:10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diao, Y., J. Li, and D. Luo, 2006: A new blocking index and its application: Blocking action in the Northern Hemisphere. J. Climate, 19, 48194839, doi:10.1175/JCLI3886.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Z., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7, 18971914, doi:10.1175/1520-0442(1994)007<1897:ASIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and E. Hunter, 2007: Drivers of declining sea ice in the Arctic winter: A tale of two seas. Geophys. Res. Lett., 34, L17503, doi:10.1029/2007GL030995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, doi:10.1007/s00376-014-0009-6.

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, doi:10.1175/JCLI-D-11-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J. S., J. Jeong, Y. S. Jang, B. M. Kim, C. K. Folland, S. K. Min, and S. W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, doi:10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. C. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, doi:10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, I. A., 1970: A Monte Carlo method for testing the statistical significance of a regression equation. J. Appl. Meteor., 9, 330332, doi:10.1175/1520-0450(1970)009<0330:AMCMFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., 2000: Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32, 2774, doi:10.1016/S0377-0265(99)00018-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., A. R. Lupo, and H. Wan, 2007: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 328, doi:10.1175/JAS3818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. L. E. Franzke, 2016a: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 39253947, doi:10.1175/JCLI-D-15-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Diao, A. Dai, C. L. E. Franzke, and I. Simmonds, 2016b: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29, 39493971, doi:10.1175/JCLI-D-15-0612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Yao, A. Dai, I. Simmonds, and L. Zhong, 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: A theoretical explanation. J. Climate, 30, 35693587, doi:10.1175/JCLI-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1995: Responses of climate and cyclones to reductions in Arctic winter sea ice. J. Geophys. Res., 100, 47914806, doi:10.1029/94JC02206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newson, R. L., 1973: Response of general circulation model of the atmosphere to removal of the Arctic ice cap. Nature, 241, 3940, doi:10.1038/241039b0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Outten, S. D., and I. Esau, 2012: A link between Arctic sea ice and recent cooling trends over Eurasia. Climatic Change, 110, 10691075, doi:10.1007/s10584-011-0334-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., K. R. Wood, and M. Wang, 2011: Warm Arctic—Cold continents: Climate impacts of the newly open Arctic Sea. Polar Res., 30, 15787, doi:10.3402/polar.v30i0.15787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, D. S., S. Lee, and S. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 40274033, doi:10.1175/JCLI-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents–Kara Sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35-year period 1979–2013. Ann. Glaciol., 56, 1828, doi:10.3189/2015AoG69A909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013a: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, doi:10.1002/grl.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013b: Caution needed when linking weather extremes to amplified planetary waves. Proc. Natl. Acad. Sci. USA, 110, E2327, doi:10.1073/pnas.1304867110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, doi:10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and F. Francis, 2016: Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat. Climate Change, 6, 856860, doi:10.1038/nclimate3011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and P. D. Govekar, 2014: What are the physical links between Arctic sea ice loss and Eurasian winter climate? Environ. Res. Lett., 9, 101003, doi:10.1088/1748-9326/9/10/101003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate. Surv. Geophys., 35, 11751214, doi:10.1007/s10712-014-9284-0.

  • Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 5263, doi:10.1016/j.gloplacha.2014.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y., and D. Luo, 2014: Relationship between zonal position of the North Atlantic Oscillation and Euro-Atlantic blocking events and its possible effect on the weather over Europe. Sci. China Earth Sci., 57, 26262638, doi:10.1007/s11430-014-4949-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., R. Ren, and M. Cai, 2015a: Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci., 72, 32143230, doi:10.1175/JAS-D-14-0390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., R. Ren, and M. Cai, 2015b: Comparison of the mass circulation and AO indices as indicators of cold air outbreaks in northern winter. Geophys. Res. Lett., 42, 24422448, doi:10.1002/2015GL063676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Methods and sensitivity to input data uncertainties. J. Geophys. Res., 100, 11491165, doi:10.1029/94JD02747.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2546 966 40
PDF Downloads 1735 412 34