Are the Central Andes Mountains a Warming Hot Spot?

Alexandria M. Russell Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Alexandria M. Russell in
Current site
Google Scholar
PubMed
Close
,
Anand Gnanadesikan Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Anand Gnanadesikan in
Current site
Google Scholar
PubMed
Close
, and
Benjamin Zaitchik Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Benjamin Zaitchik in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global climate model simulations project that the tropical Andes Mountains of South America, which are particularly vulnerable to climate change because of a reliance on snow and glacial melt for freshwater resources, will experience enhanced warming in the near future, with both higher rates of warming at higher elevations within the mountain range itself and localized enhancement of warming exceeding surrounding areas of the globe. Yet recent surface temperature changes in the tropical Andes do not show evidence for either elevation-dependent warming or regional enhancement of warming on average. However, it remains a possibility that the expected warming trends in this region have begun to manifest in other ways (e.g., in the free atmosphere or at intermediate mountain elevations). This paper proposes evidence from several reanalysis products that there has indeed been a regional enhancement of midtropospheric warming around the central Andes over the past few decades that makes this region stand out as a hot spot within the broader pantropics. This trend is generally not reproduced by historical AMIP climate model simulations, which suggests that the mechanisms through which the atmosphere is warming over the central Andes are not adequately captured by climate models. Possible explanations for localized enhancement of warming in this region are considered. On the other hand, reanalysis products do not consistently exhibit enhanced warming at intermediate mountain elevations in the central Andes as evidenced by the generally moderate rates of change in the freezing-level height, except perhaps in the highest-resolution reanalysis product.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Alexandria M. Russell, alexi.russell@jhu.edu

Abstract

Global climate model simulations project that the tropical Andes Mountains of South America, which are particularly vulnerable to climate change because of a reliance on snow and glacial melt for freshwater resources, will experience enhanced warming in the near future, with both higher rates of warming at higher elevations within the mountain range itself and localized enhancement of warming exceeding surrounding areas of the globe. Yet recent surface temperature changes in the tropical Andes do not show evidence for either elevation-dependent warming or regional enhancement of warming on average. However, it remains a possibility that the expected warming trends in this region have begun to manifest in other ways (e.g., in the free atmosphere or at intermediate mountain elevations). This paper proposes evidence from several reanalysis products that there has indeed been a regional enhancement of midtropospheric warming around the central Andes over the past few decades that makes this region stand out as a hot spot within the broader pantropics. This trend is generally not reproduced by historical AMIP climate model simulations, which suggests that the mechanisms through which the atmosphere is warming over the central Andes are not adequately captured by climate models. Possible explanations for localized enhancement of warming in this region are considered. On the other hand, reanalysis products do not consistently exhibit enhanced warming at intermediate mountain elevations in the central Andes as evidenced by the generally moderate rates of change in the freezing-level height, except perhaps in the highest-resolution reanalysis product.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Alexandria M. Russell, alexi.russell@jhu.edu
Save
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 19 pp., doi:10.7289/V5C8276M.

    • Crossref
    • Export Citation
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, doi:10.1175/2008JAMC1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., F. T. Keimig, and H. F. Diaz, 2004: Projected temperature changes along the American cordillera and the planned GCOS network. Geophys. Res. Lett., 31, L16210, doi:10.1029/2004GL020229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., M. Vuille, H. F. Diaz, and W. Vergara, 2006: Threats to water supplies in the tropical Andes. Science, 312, 17551756, doi:10.1126/science.1128087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., F. T. Keimig, H. F. Diaz, and D. R. Hardy, 2009: Recent changes in freezing level heights in the tropics with implications for the deglacierization of high mountain regions. Geophys. Res. Lett., 36, L17701, doi:10.1029/2009GL037712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bury, J., B. G. Mark, M. Carey, K. R. Young, J. M. McKenzie, M. Baraer, A. French, and M. H. Polk, 2013: New geographies of water and climate change in Peru: Coupled natural and social transformations in the Santa River watershed. Ann. Assoc. Amer. Geogr., 103, 363374, doi:10.1080/00045608.2013.754665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2015: The climate data guide: Atmospheric reanalysis; overview and comparison tables. NCAR, accessed 12 December 2015. [Available online at https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-tables.]

  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falvey, M., and R. D. Garreaud, 2009: Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res., 114, D04102, doi:10.1029/2008JD010519.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, doi:10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., 2012: A mechanism for land–ocean contrasts in global monsoon trends in a warming climate. Climate Dyn., 39, 11371147, doi:10.1007/s00382-011-1270-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feeley, K. J., and Coauthors, 2011: Upslope migration of Andean trees. J. Biogeogr., 38, 783791, doi:10.1111/j.1365-2699.2010.02444.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flannaghan, T. J., S. Fueglistaler, I. M. Held, S. Po-Chedley, B. Wyman, and M. Zhao, 2014: Tropical temperature trends in atmospheric general circulation model simulations and the impact of uncertainties in observed SSTs. J. Geophys. Res. Atmos., 119, 13 32713 337, doi:10.1002/2014JD022365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forero-Medina, G., J. Terborgh, S. J. Socolar, and S. L. Pimm, 2011: Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PLoS One, 6, e28535, doi:10.1371/journal.pone.0028535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. Manabe, and C. M. Johanson, 2011: On the warming in the tropical upper troposphere: Models versus observations. Geophys. Res. Lett., 38, L15704, doi:10.1029/2011GL048101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., M. M. Hurwitz, and L. D. Oman, 2015: Effect of recent sea surface temperature trends on the Arctic stratospheric vortex. J. Geophys. Res. Atmos., 120, 54045416, doi:10.1002/2015JD023284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2009: The Andes climate and weather. Adv. Geosci., 22, 311, doi:10.5194/adgeo-22-3-2009.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaser, G., I. Juen, C. Georges, J. Gomez, and W. Tamayo, 2003: The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Peru. J. Hydrol., 282, 130144, doi:10.1016/S0022-1694(03)00259-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaser, G., C. Georges, I. Juen, and T. Mölg, 2005: Low-latitude glaciers: Unique global climate indicators and essential contributors to regional fresh water supply; a conceptual approach. Global Change and Mountain Regions: An Overview of Current Knowledge, U. Huber, H. K. M. Bugmann, and M. A. Reasoner, Eds., Springer, 185–196.

    • Crossref
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lejeune, Y., L. Bouilloud, P. Etchevers, P. Wagnon, P. Chevallier, J.-E. Sicart, E. Martin, and F. Habets, 2007: Melting of snow cover in a tropical mountain environment in Bolivia: Processes and modeling. J. Hydrometeor., 8, 922937, doi:10.1175/JHM590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, doi:10.1007/s00376-012-2140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Mark, B. G., J. M. McKenzie, and J. Gomez, 2005: Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. Hydrol. Sci. J., 50, 975987, doi:10.1623/hysj.2005.50.6.975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masiokas, M. H., R. Villalba, B. H. Luckman, C. Le Quesne, and J. C. Aravena, 2006: Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: Large-scale atmospheric influences and implications for water resources in the region. J. Climate, 19, 63346352, doi:10.1175/JCLI3969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masiokas, M. H., R. Villalba, D. A. Christie, E. Betman, B. H. Luckman, C. Le Quesne, M. R. Prieto, and S. Mauget, 2012: Snowpack variations since AD 1150 in the Andes of Chile and Argentina (30°–37°S) inferred from rainfall, tree-ring and documentary records. J. Geophys. Res., 117, D05112, doi:10.1029/2011JD016748.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Climate Change, 4, 898902, doi:10.1038/nclimate2357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office, 2006: Met Office global radiosonde data. NCAS British Atmospheric Data Centre, accessed 4 January 2016. [Available online at https://badc.nerc.ac.uk/data/radiosglobe/southamerica.html.]

  • Mitchell, D. M., P. W. Thorne, P. A. Stott, and L. J. Gray, 2013: Revisiting the controversial issue of tropical tropospheric temperature trends. Geophys. Res. Lett., 40, 28012806, doi:10.1002/grl.50465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nogués-Bravo, D., M. B. Araujo, M. P. Errea, and J. P. Martinez-Rica, 2007: Exposure of global mountain systems to climate warming during the 21st century. Global Environ. Change, 17, 420428, doi:10.1016/j.gloenvcha.2006.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, E., 2015: Blind use of reanalysis data: Apparent trends in Madden–Julian oscillation activity driven by observational changes. Int. J. Climatol., 36, 34583468, doi:10.1002/joc.4568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and J. D. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett., 35, L14701, doi:10.1029/2008GL034026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N. C., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, doi:10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipona, R., B. Dürr, A. Ohmura, and C. Ruckstuhl, 2005: Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys. Res. Lett., 32, L19809, doi:10.1029/2005GL023624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Po-Chedley, S., and Q. Fu, 2012: Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environ. Res. Lett., 7, 044018, doi:10.1088/1748-9326/7/4/044018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prieto, R., R. Herrera, P. Doussel, L. Gimeno, P. Ribera, R. Garcia, and E. Hernandez, 2001: Interannual oscillations and trend of snow occurrence in the Andes region since 1885. Aust. Meteor. Mag., 50, 164168.

    • Search Google Scholar
    • Export Citation
  • Quadro, M. F. L., E. H. Berbery, M. A. F. Silva Dias, D. L. Herdies, and L. G. G. Gonçalves, 2013: The atmospheric water cycle over South America as seen in the new generation of global reanalyses. AIP Conf. Proc., 1531, 732735, doi:10.1063/1.4804874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabatel, A., and Coauthors, 2013: Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere, 7, 81102, doi:10.5194/tc-7-81-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., 2013: Amplified water vapour feedback at high altitudes during winter. Int. J. Climatol., 33, 897903, doi:10.1002/joc.3477.

  • Rangwala, I., J. Miller, and M. Xu, 2009: Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophys. Res. Lett., 36, L06703, doi:10.1029/2009GL037245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. Miller, G. L. Russell, and M. Xu, 2010: Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dyn., 34, 859872, doi:10.1007/s00382-009-0564-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, J. M., M. R. Silman, J. S. Clark, C. A. J. Girardin, D. Galiano, and R. Tito, 2012: Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes. Ecology, 93, 20612072, doi:10.1890/11-1725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., J. J. Hnilo, T. M. L. Wigley, J. S. Boyle, C. Doutriaux, M. Fiorino, D. E. Parker, and K. E. Taylor, 1999: Uncertainties in observationally based estimates of temperature change in the free atmosphere. J. Geophys. Res., 104, 63056333, doi:10.1029/1998JD200096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schauwecker, S., and Coauthors, 2014: Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Global Planet. Change, 119, 8597, doi:10.1016/j.gloplacha.2014.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, doi:10.1175/2011JCLI4104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shook, K., and J. W. Pomeroy, 2012: Changes in the hydrological character of rainfall on the Canadian prairies. Hydrol. Processes, 26, 17521766, doi:10.1002/hyp.9383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solman, S., 2013: Regional climate modeling over South America: A review. Adv. Meteor., 2013, 504357, doi:10.1155/2013/504357.

  • Soruco, A., C. Vincent, A. Rabatel, B. Francou, E. Thibert, J. E. Sicart, and T. Condom, 2015: Contribution of glacier runoff to water resources of La Paz city, Bolivia (16°S). Ann. Glaciol., 56, 147154, doi:10.3189/2015AoG70A001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, doi:10.1126/science.1257856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, 2013: Technical summary. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 33–115.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

  • Trenberth, K. E., D. P. Stepaniak, J. W. Hurrell, and M. Fiorino, 2001: Quality of reanalyses in the tropics. J. Climate, 14, 14991510, doi:10.1175/1520-0442(2001)014<1499:QORITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unden, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. Swedish Meteorological and Hydrological Institute Tech. Rep. SE-601-76, 144 pp.

  • Urrutia, R., and M. Vuille, 2009: Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res., 114, D02108, doi:10.1029/2008JD011021.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergara, W., A. M. Deeb, A. M. Valencia, R. S. Bradley, B. Francou, A. Zarzar, A. Grunwalt, and S. M. Haeussling, 2007: Economic impacts of rapid glacier retreat in the Andes. Eos, Trans. Amer. Geophys. Union, 88, 261264, doi:10.1029/2007EO250001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv., Atmos. Oceanic Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., and R. S. Bradley, 2000: Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys. Res. Lett., 27, 38853888, doi:10.1029/2000GL011871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000a: Interannual climate variability in the central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res., 105, 12 44712 460, doi:10.1029/2000JD900134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, and F. Keimig, 2000b: Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperatures anomalies. J. Climate, 13, 25202535, doi:10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., R. S. Bradley, M. Werner, and F. Keimig, 2003: 20th century climate change in the tropical Andes: Observations and model results. Climatic Change, 59, 7599, doi:10.1023/A:1024406427519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., B. Francou, P. Wagnon, I. Juen, G. Kaser, B. G. Mark, and R. S. Bradley, 2008: Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci. Rev., 89, 7996, doi:10.1016/j.earscirev.2008.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vuille, M., E. Franquist, R. Garreaud, W. S. Lavado Casimiro, and B. Caceres, 2015: Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. Atmos., 120, 37453757, doi:10.1002/2015JD023126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, S., and P. Pilon, 2004: A comparison of the power of the t test, Mann–Kendall and bootstrap tests for trend detection. Hydrol. Sci. J., 49, 2137, doi:10.1623/hysj.49.1.21.53996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1241 481 29
PDF Downloads 668 150 10