Contribution of Tropical Cyclones to Atmospheric Moisture Transport and Rainfall over East Asia

Liang Guo National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Liang Guo in
Current site
Google Scholar
PubMed
Close
,
Nicholas P. Klingaman National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Nicholas P. Klingaman in
Current site
Google Scholar
PubMed
Close
,
Pier Luigi Vidale National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Pier Luigi Vidale in
Current site
Google Scholar
PubMed
Close
,
Andrew G. Turner National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Andrew G. Turner in
Current site
Google Scholar
PubMed
Close
,
Marie-Estelle Demory National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Marie-Estelle Demory in
Current site
Google Scholar
PubMed
Close
, and
Alison Cobb Department of Physics, Imperial College, London, United Kingdom

Search for other papers by Alison Cobb in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The coastal region of East Asia (EA) is one of the regions with the most frequent impacts from tropical cyclones (TCs). In this study, rainfall and moisture transports related to TCs are measured over EA, and the contribution of TCs to the regional water budget is compared with other contributors, especially the mean circulation of the EA summer monsoon (EASM). Based on ERA-Interim reanalysis (1979–2012), the trajectories of TCs are identified using an objective feature tracking method. Over 60% of TCs occur from July to October (JASO). During JASO, TC rainfall contributes 10%–30% of the monthly total rainfall over the coastal region of EA; this contribution is highest over the south/southeast coast of China in September. TCs make a larger contribution to daily extreme rainfall (above the 95th percentile): 50%–60% over the EA coast and as high as 70% over Taiwan Island. Compared with the mean EASM, TCs transport less moisture over EA. However, as the peak of the mean seasonal cycle of TCs lags two months behind that of the EASM, the moisture transported by TCs is an important source for the water budget over the EA region when the EASM withdraws. This moisture transport is largely performed by westward-moving TCs. These results improve understanding of the water cycle of EA and provide a useful test bed for evaluating and improving seasonal forecasts and coupled climate models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Liang Guo, l.guo@reading.ac.uk

Abstract

The coastal region of East Asia (EA) is one of the regions with the most frequent impacts from tropical cyclones (TCs). In this study, rainfall and moisture transports related to TCs are measured over EA, and the contribution of TCs to the regional water budget is compared with other contributors, especially the mean circulation of the EA summer monsoon (EASM). Based on ERA-Interim reanalysis (1979–2012), the trajectories of TCs are identified using an objective feature tracking method. Over 60% of TCs occur from July to October (JASO). During JASO, TC rainfall contributes 10%–30% of the monthly total rainfall over the coastal region of EA; this contribution is highest over the south/southeast coast of China in September. TCs make a larger contribution to daily extreme rainfall (above the 95th percentile): 50%–60% over the EA coast and as high as 70% over Taiwan Island. Compared with the mean EASM, TCs transport less moisture over EA. However, as the peak of the mean seasonal cycle of TCs lags two months behind that of the EASM, the moisture transported by TCs is an important source for the water budget over the EA region when the EASM withdraws. This moisture transport is largely performed by westward-moving TCs. These results improve understanding of the water cycle of EA and provide a useful test bed for evaluating and improving seasonal forecasts and coupled climate models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Liang Guo, l.guo@reading.ac.uk
Save
  • Bell, R., J. Strachan, P. L. Vidale, K. Hodges, and M. Roberts, 2013: Response of tropical cyclones to idealized climate change experiments in a global high-resolution coupled general circulation model. J. Climate, 26, 79667980, doi:10.1175/JCLI-D-12-00749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analysis. Tellus, 59A, 396416, doi:10.1111/j.1600-0870.2007.00236.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and Coauthors, 2011: ERA-Interim archive, v2. ECMWF Tech. Rep. 23, 96 pp.

  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007a: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, doi:10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, doi:10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, doi:10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., R. Wu, and Z. Wen, 2012: Contribution of South China Sea tropical cyclones to an increase in southern China summer rainfall around 1993. Adv. Atmos. Sci., 29, 585598, doi:10.1007/s00376-011-1181-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-M., T. Li, and C.-F. Shih, 2010: Tropical cyclone– and monsoon-induced rainfall variability in Taiwan. J. Climate, 23, 41074120, doi:10.1175/2010JCLI3355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., E. E. Ebert, K. J. Walsh, and N. E. Davidson, 2013: Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res., 118, 21842196, doi:10.1002/jgrd.50250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chia, H., and C. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944, doi:10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dare, R. A., N. E. Davidson, and J. L. McBride, 2012: Tropical cyclone contribution to rainfall over Australia. Mon. Wea. Rev., 140, 36063619, doi:10.1175/MWR-D-11-00340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Englehart, P. J., and A. V. Douglas, 2001: The role of eastern North Pacific tropical storms in the rainfall climatology of western Mexico. Int. J. Climatol., 21, 13571370, doi:10.1002/joc.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, X., R. Wu, J. Chen, and Z. Wen, 2013: Factors for interannual variations of September–October rainfall in Hainan, China. J. Climate, 26, 89628978, doi:10.1175/JCLI-D-12-00728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., H.-S. Kim, J.-H. Jeong, and S.-W. Son, 2009: Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific. Geophys. Res. Lett., 36, L06702, doi:10.1029/2009GL037163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., and R. Emerton, 2015: The prediction of Northern Hemisphere tropical cyclone extended life cycles by the ECMWF ensemble and deterministic prediction systems. Part I: Tropical cyclone stage. Mon. Wea. Rev., 143, 50915114, doi:10.1175/MWR-D-13-00385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets? J. Climate, doi:10.1175/JCLI-D-16-0557.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2012: TRMM and other data precipitation data set documentation. NASA GSFC, 42 pp. [Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.]

  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, doi:10.1175/2009JCLI3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191, doi:10.1175/2007JCLI1493.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, J., Y. Zhou, and R. W. Higgins, 2005: Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. J. Climate, 18, 12471262, doi:10.1175/JCLI3317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-H., C.-H. Ho, J.-H. Kim, and H.-J. Song, 2012: Low-frequency variability of tropical cyclone-induced heavy rainfall over East Asia associated with tropical and North Pacific sea surface temperatures. J. Geophys. Res., 117, D12101, doi:10.1029/2012JD017565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis. Water Resour. Res., 49, 72367254, doi:10.1002/wrcr.20527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2016: On the link between tropical cyclones and daily rainfall extremes derived from global satellite observations. J. Climate, 29, 61276135, doi:10.1175/JCLI-D-16-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., B. Gleason, and D. Easterling, 2002: Typhoon impacts on China’s precipitation during 1957–1996. Adv. Atmos. Sci., 19, 943952, doi:10.1007/s00376-002-0057-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., G. Wu, W. Dong, X. Wang, Y. Wang, W. Ai, and W. Li, 2006: Changes in tropical cyclone precipitation over China. Geophys. Res. Lett., 33, L20702, doi:10.1029/2006GL027951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2015: Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models. J. Climate, 28, 574596, doi:10.1175/JCLI-D-14-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and K. I. Hodges, 2010: Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Climate, 23, 48234840, doi:10.1175/2010JCLI3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, doi:10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, doi:10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133152, doi:10.1175/JCLI-D-12-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, S.-F., and T. Yasunari, 1998: Climatological aspects and mechanism of spring persistent rains over central China. J. Meteor. Soc. Japan, 76, 5771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and R. F. Denniston, 2015: Contribution of tropical cyclones to extreme rainfall in Australia. Int. J. Climatol., 36, 10191025, doi:10.1002/joc.4393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., R. Goska, J. A. Smith, and G. A. Vecchi, 2014: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, doi:10.1175/BAMS-D-13-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., and T.-C. Chen, 2008: Measuring East Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J. Appl. Meteor. Climatol., 47, 20682080, doi:10.1175/2007JAMC1821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., S. Wu, and P. Zhai, 2007: The impact of tropical cyclones on Hainan Island’s extreme and total precipitation. Int. J. Climatol., 27, 10591064, doi:10.1002/joc.1464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, G., T. J. Osborn, and A. J. Matthews, 2016: Moisture transport by Atlantic tropical cyclones onto the North American continent. Climate Dyn., 122, doi:10.1007/s00382-016-3257-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2573 1399 53
PDF Downloads 1209 196 16