The Global Ocean Water Cycle in Atmospheric Reanalysis, Satellite, and Ocean Salinity

Lisan Yu Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Lisan Yu in
Current site
Google Scholar
PubMed
Close
,
Xiangze Jin Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Xiangze Jin in
Current site
Google Scholar
PubMed
Close
,
Simon A. Josey National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Simon A. Josey in
Current site
Google Scholar
PubMed
Close
,
Tong Lee Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Tong Lee in
Current site
Google Scholar
PubMed
Close
,
Arun Kumar Climate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
,
Caihong Wen Climate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland
Innovim, Greenbelt, Maryland

Search for other papers by Caihong Wen in
Current site
Google Scholar
PubMed
Close
, and
Yan Xue Climate Prediction Center, NCEP/NWS/NOAA, College Park, Maryland

Search for other papers by Yan Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study provides an assessment of the uncertainty in ocean surface (OS) freshwater budgets and variability using evaporation E and precipitation P from 10 atmospheric reanalyses, two combined satellite-based E − P products, and two observation-based salinity products. Three issues are examined: the uncertainty level in the OS freshwater budget in atmospheric reanalyses, the uncertainty structure and association with the global ocean wet/dry zones, and the potential of salinity in ascribing the uncertainty in E − P. The products agree on the global mean pattern but differ considerably in magnitude. The OS freshwater budgets are 129 ± 10 (8%) cm yr−1 for E, 118 ± 11 (9%) cm yr−1 for P, and 11 ± 4 (36%) cm yr−1 for E − P, where the mean and error represent the ensemble mean and one standard deviation of the ensemble spread. The E − P uncertainty exceeds the uncertainty in E and P by a factor of 4 or more. The large uncertainty is attributed to P in the tropical wet zone. Most reanalyses tend to produce a wider tropical rainband when compared to satellite products, with the exception of two recent reanalyses that implement an observation-based correction for the model-generated P over land. The disparity in the width and the extent of seasonal migrations of the tropical wet zone causes a large spread in P, implying that the tropical moist physics and the realism of tropical rainfall remain a key challenge. Satellite salinity appears feasible to evaluate the fidelity of E − P variability in three tropical areas, where the uncertainty diagnosis has a global indication.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Lisan Yu, lyu@whoi.edu

Abstract

This study provides an assessment of the uncertainty in ocean surface (OS) freshwater budgets and variability using evaporation E and precipitation P from 10 atmospheric reanalyses, two combined satellite-based E − P products, and two observation-based salinity products. Three issues are examined: the uncertainty level in the OS freshwater budget in atmospheric reanalyses, the uncertainty structure and association with the global ocean wet/dry zones, and the potential of salinity in ascribing the uncertainty in E − P. The products agree on the global mean pattern but differ considerably in magnitude. The OS freshwater budgets are 129 ± 10 (8%) cm yr−1 for E, 118 ± 11 (9%) cm yr−1 for P, and 11 ± 4 (36%) cm yr−1 for E − P, where the mean and error represent the ensemble mean and one standard deviation of the ensemble spread. The E − P uncertainty exceeds the uncertainty in E and P by a factor of 4 or more. The large uncertainty is attributed to P in the tropical wet zone. Most reanalyses tend to produce a wider tropical rainband when compared to satellite products, with the exception of two recent reanalyses that implement an observation-based correction for the model-generated P over land. The disparity in the width and the extent of seasonal migrations of the tropical wet zone causes a large spread in P, implying that the tropical moist physics and the realism of tropical rainfall remain a key challenge. Satellite salinity appears feasible to evaluate the fidelity of E − P variability in three tropical areas, where the uncertainty diagnosis has a global indication.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Lisan Yu, lyu@whoi.edu
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, S. Levitus, Ed., NOAA Atlas NESDIS 62, 182 pp.

  • Baumgartner, A., and E. Reichel, 1975: The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation and Run-Off. Elsevier, 179 pp.

  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, doi:10.1175/2008JAMC1921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and Coauthors, 2015: MERRA-2: Initial evaluation of the climate. Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 43, R. D. Koster, Ed., Goddard Space Flight Center, 139 pp.

  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2016: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, doi:10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., and P. Xie, 2008: CPC unified gauge-based analysis of global daily precipitation. Proc. Western Pacific Geophysics Meeting, Cairns, Queensland, Australia, Amer. Geophys. Union. [Available online at ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_CONUS/DOCU/Chen_et_al_2008_Daily_Gauge_Anal.pdf.]

  • Compo, G., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Compo, G., J. Carton, X. Dong, A. Kumar, S. Saha, J. S. Woollen, L. Yu, and H. M. Archambault, 2016: Report from the NOAA Climate Reanalysis Task Force Technical Workshop. NOAA Tech. Rep. OAR CPO-4, 23 pp., doi:10.7289/V53J39ZZ.

    • Crossref
    • Export Citation
  • Dai, A., T. Qian, K. E. Trenberth, and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792, doi:10.1175/2008JCLI2592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. Meincke, S. A. Malmberg, and A. J. Lee, 1988: The “Great Salinity Anomaly” in the northern North Atlantic, 1968–1982. Prog. Oceanogr., 20, 103151, doi:10.1016/0079-6611(88)90049-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, G. W., 1974: Precipitation signatures in sea-surface-layer conditions during BOMEX. J. Phys. Oceanogr., 4, 498501, doi:10.1175/1520-0485(1974)004<0498:PSISSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, D., and D. Roemmich, 2014: Climatological monthly heat and freshwater flux estimates on a global scale from Argo. J. Geophys. Res. Oceans, 119, 68846899, doi:10.1002/2014JC010083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, doi:10.1029/2012RG000389.

  • Hagemann, S., K. Arpe, and L. Bengtsson, 2005: Validation of the hydrological cycle of ERA-40. ERA-40 Project Rep. Series, No. 24, ECMWF, 42 pp. [Available online at http://www.ecmwf.int/en/elibrary/9728-validation-hydrological-cycle-era-40.]

  • Hegerl, G. C., and Coauthors, 2015: Challenges in quantifying changes in the global water cycle. Bull. Amer. Meteor. Soc., 96, 10971115, doi:10.1175/BAMS-D-13-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., C. Peubey, A. Simmons, P. Berrisford, P. Poli, and D. Dee, 2015: ERA-20CM: A twentieth-century atmospheric model ensemble. Quart. J. Roy. Meteor. Soc., 141, 23502375, doi:10.1002/qj.2528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, K. Sato, and T. Suga, 2010: Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr., 66, 773787, doi:10.1007/s10872-010-0063-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., A. Gruber, C. R. Kondragunta, R. E. Livezey, and G. J. Huffman, 1998: A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge-satellite combined dataset with observational error considerations. J. Climate, 11, 29602979, doi:10.1175/1520-0442(1998)011<2960:ACOTNN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, X., and L. Yu, 2013: Assessing high-resolution analysis of surface heat fluxes in the Gulf Stream region. J. Geophys. Res. Oceans, 118, 53535375, doi:10.1002/jgrc.20386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, X., L. Yu, D. L. Jackson, and G. A. Wick, 2015: An improved near-surface specific humidity and air temperature climatology for the SSM/I satellite period. J. Atmos. Oceanic Technol., 32, 412433, doi:10.1175/JTECH-D-14-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S. A., L. Yu, S. Gulev, X. Jin, N. Tilinina, B. Barnier, and L. Brodeau, 2014: Unexpected impacts of the tropical Pacific array on reanalysis surface meteorology and heat fluxes. Geophys. Res. Lett., 41, 62136220, doi:10.1002/2014GL061302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Z. Hu, 2012: Uncertainty in the ocean–atmosphere feedbacks associated with ENSO in the reanalysis products. Climate Dyn., 39, 575588, doi:10.1007/s00382-011-1104-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., F. Yang, L. Goddard, and S. Schubert, 2004: Differing trends in the tropical surface temperatures and precipitation over land and oceans. J. Climate, 17, 653664, doi:10.1175/1520-0442(2004)017<0653:DTITTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., and Coauthors, 2008: The Aquarius/SAC-D Mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21, 6881, doi:10.5670/oceanog.2008.68.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., 2016: Consistency of Aquarius sea surface salinity with Argo products on various spatial and temporal scales. Geophys. Res. Lett., 43, 38573864, doi:10.1002/2016GL068822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, C., and H. Kunstmann, 2012: The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J. Hydrometeor., 13, 13971420, doi:10.1175/JHM-D-11-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357, doi:10.1029/90JC01951.

  • Mignot, J., and C. Frankignoul, 2003: On the interannual variability of surface salinity in the Atlantic. Climate Dyn., 20, 555565, doi:10.1007/s00382-002-0294-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, doi:10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci., 17, 37073720, doi:10.5194/hess-17-3707-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and J. W. Bergman, 2000: An assessment of the NCEP, NASA, and ECMWF reanalyses over the tropical west Pacific warm pool. Bull. Amer. Meteor. Soc., 81, 4148, doi:10.1175/1520-0477(2000)081<0041:AAOTNN>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Rep. Series, Vol. 14, 59 pp. [Available online at http://www.ecmwf.int/en/elibrary/11699-data-assimilation-system-and-initial-performance-evaluation-ecmwf-pilot-reanalysis.]

  • Quartly, G. D., E. A. Kyte, M. A. Srokosz, and M. N. Tsimplis, 2007: An intercomparison of global oceanic precipitation climatologies. J. Geophys. Res., 112, D10121, doi:10.1029/2006JD007810.

    • Search Google Scholar
    • Export Citation
  • Ren, L., E. Hackert, P. Arkin, and A. J. Busalacchi, 2014: Estimating the global oceanic net freshwater flux from Argo and comparing it with satellite-based freshwater flux products. J. Geophys. Res. Oceans, 119, 78697881, doi:10.1002/2013JC009620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–315, doi:10.1017/CBO9781107415324.010.

    • Crossref
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roads, J., 2003: The NCEP–NCAR, NCEP–DOE, and TRMM tropical atmosphere hydrologic cycles. J. Hydrometeor., 4, 826840, doi:10.1175/1525-7541(2003)004<0826:TNNATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. B. Roberts, R. H. Reichle, R. Adler, L. Ricciardulli, W. Berg, and G. J. Huffman, 2014: Consistency of estimated global water cycle variations over the satellite era. J. Climate, 27, 61356154, doi:10.1175/JCLI-D-13-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite‐based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schanze, J. J., R. W. Schmitt, and L. Yu, 2010: The global oceanic freshwater cycle: A state-of-the-art quantification. J. Mar. Res., 68, 569595, doi:10.1357/002224010794657164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., and P. R. Houser, 2007: Assessing a satellite-era perspective of the global water cycle. J. Climate, 20, 13161338, doi:10.1175/JCLI4057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, doi:10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, W., S. H. Yueh, A. G. Fore, A. Hayashi, T. Lee, and G. Lagerloef, 2014: Uncertainty of Aquarius sea surface salinity retrieved under rainy conditions and its implication on the water cycle study. J. Geophys. Res. Oceans, 119, 48214839, doi:10.1002/2014JC009834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., E. F. Bradley, C. W. Fairall, L. Legler, J. Schulz, R. A. Weller, and G. H. White, 1999: Surface fluxes and surface reference sites. Proc. OceanObs’99, St Raphael, France, OceanSITES, 29 pp. [Available online at http://www.oceansites.org/docs/OceanObs99SurfFluxes.pdf.]

  • Terray, L., L. Corre, S. Cravatte, T. Delcroix, G. Reverdin, and A. Ribes, 2012: Near-surface salinity as Nature’s rain gauge to detect human influence on the tropical water cycle. J. Climate, 25, 958977, doi:10.1175/JCLI-D-10-05025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. G. Olson, 1988: An evaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Medium-Range Weather Forecasts. Bull. Amer. Meteor. Soc., 69, 10471057, doi:10.1175/1520-0477(1988)069<1047:AEAIOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and L. Smith, 2005: The mass of the atmosphere: A constraint on global analyses. J. Climate, 18, 864875, doi:10.1175/JCLI-3299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17, 259276, doi:10.1007/PL00007927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van der Ent, R. J., and H. H. G. Savenije, 2013: Oceanic sources of continental precipitation and the correlation with sea surface temperature. Water Resour. Res., 49, 39934004, doi:10.1002/wrcr.20296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., and R. M. Ponte, 2013: Clarifying the link between surface salinity and freshwater fluxes on monthly to interannual time scales. J. Geophys. Res. Oceans, 118, 31903201, doi:10.1002/jgrc.20200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165183, doi:10.1016/j.dynatmoce.2007.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, C., Y. Xue, and A. Kumar, 2012: Ocean–atmosphere characteristics of tropical instability waves simulated in the NCEP Climate Forecast System Reanalysis. J. Climate, 25, 64096425, doi:10.1175/JCLI-D-11-00477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5, 12071222, doi:10.1175/JHM-392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2011: A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res., 116, C10025, doi:10.1029/2010JC006937 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2014: Coherent evidence from Aquarius and Argo on the existence of a shallow low-salinity convergence zone beneath the Pacific ITCZ. J. Geophys. Res. Oceans, 119, 76257644, doi:10.1002/2014JC010030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2015: Sea-surface salinity fronts and associated salinity-minimum zones in the tropical ocean. J. Geophys. Res. Oceans, 120, 42054225, doi:10.1002/2015JC010790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and X. Jin, 2014a: Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward). J. Geophys. Res. Oceans, 119, 52445269, doi:10.1002/2013JC009648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and X. Jin, 2014b: Confidence and sensitivity study of the OAFlux multisensor synthesis of the global ocean surface vector wind from 1987 onward. J. Geophys. Res. Oceans, 119, 68426862, doi:10.1002/2014JC010194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

  • Yueh, S., W. Tang, A. Fore, A. Hayashi, Y. T. Song, and G. Lagerloef, 2014: Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval. J. Geophys. Res. Oceans, 119, 53605379, doi:10.1002/2014JC009939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., A. Kumar, and W. Wang, 2012: Influence of changes in observations on precipitation: A case study for the Climate Forecast System Reanalysis (CFSR). J. Geophys. Res., 117, D08105, doi:10.1029/2011JD017347.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1041 206 15
PDF Downloads 608 105 8