Atmospheric Energetics over the Tropical Pacific during the ENSO Cycle

Di Dong State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Di Dong in
Current site
Google Scholar
PubMed
Close
,
Jianping Li State Key Laboratory of Earth Surface Processes and Resource Ecology, and College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Lidou Huyan State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Lidou Huyan in
Current site
Google Scholar
PubMed
Close
, and
Jiaqing Xue State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jiaqing Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric perturbation potential energy (PPE) over the tropical Pacific is calculated and analyzed in a composite ENSO cycle. The PPE over the tropical Pacific troposphere increases during El Niño and decreases during La Niña, displaying two centers symmetrical about the equator and delaying the central–eastern Pacific SST anomaly by two months. Generated from atmospheric diabatic heating, the smaller part of PPE in the lower troposphere varies synchronously with the central–eastern Pacific SST through sensible heating, while the larger part of PPE lies in the mid- and upper troposphere and lags the central–eastern Pacific SST about one season because of latent heat release. As the tropical Pacific PPE peaks during the boreal late winter in an El Niño event, two anticyclones form in the upper troposphere as a result of the Gill model response. More PPE is converted to atmospheric kinetic energy (KE) above the central–western Pacific, but less over the eastern Pacific, leading to intensified Hadley circulations over the central–western Pacific and weakened Hadley circulations over the eastern Pacific. The strengthened Hadley circulations cause surface easterly wind bursts through KE convergence in the western equatorial Pacific, which may trigger a La Niña event. The reverse situation occurs during La Niña. Thus, the response of the Hadley circulations in the central–western Pacific provides a negative feedback during the ENSO cycle.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Jianping Li, ljp@bnu.edu.cn

Abstract

The atmospheric perturbation potential energy (PPE) over the tropical Pacific is calculated and analyzed in a composite ENSO cycle. The PPE over the tropical Pacific troposphere increases during El Niño and decreases during La Niña, displaying two centers symmetrical about the equator and delaying the central–eastern Pacific SST anomaly by two months. Generated from atmospheric diabatic heating, the smaller part of PPE in the lower troposphere varies synchronously with the central–eastern Pacific SST through sensible heating, while the larger part of PPE lies in the mid- and upper troposphere and lags the central–eastern Pacific SST about one season because of latent heat release. As the tropical Pacific PPE peaks during the boreal late winter in an El Niño event, two anticyclones form in the upper troposphere as a result of the Gill model response. More PPE is converted to atmospheric kinetic energy (KE) above the central–western Pacific, but less over the eastern Pacific, leading to intensified Hadley circulations over the central–western Pacific and weakened Hadley circulations over the eastern Pacific. The strengthened Hadley circulations cause surface easterly wind bursts through KE convergence in the western equatorial Pacific, which may trigger a La Niña event. The reverse situation occurs during La Niña. Thus, the response of the Hadley circulations in the central–western Pacific provides a negative feedback during the ENSO cycle.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Jianping Li, ljp@bnu.edu.cn
Save
  • Angell, J. K., 1981: Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern Pacific. Mon. Wea. Rev., 109, 230243, doi:10.1175/1520-0493(1981)109<0230:COVIAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belamari, S., J. L. Redelsperger, and M. Pontaud, 2003: Dynamic role of a westerly wind burst in triggering an equatorial Pacific warm event. J. Climate, 16, 18691890, doi:10.1175/1520-0442(2003)016<1869:DROAWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boulanger, J. P., and Coauthors, 2001: Role of non-linear oceanic processes in the response to westerly wind events: New implications for the 1997 El Niño onset. Geophys. Res. Lett., 28, 16031606, doi:10.1029/2000GL012364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and A. V. Fedorov, 2008: Mean energy balance in the tropical Pacific Ocean. J. Mar. Res., 66, 123, doi:10.1357/002224008784815757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and A. V. Fedorov, 2010: How much energy is transferred from the winds to the thermocline on ENSO time scales? J. Climate, 23, 15631580, doi:10.1175/2009JCLI2914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, doi:10.1038/ngeo2399.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., Jr., 1978: A reexamination of limited-area available potential energy budget equations. J. Atmos. Sci., 35, 16551659, doi:10.1175/1520-0469(1978)035<1655:AROLAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, doi:10.1175/JCLI3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2007: Net energy dissipation rates in the tropical ocean and ENSO dynamics. J. Climate, 20, 11081117, doi:10.1175/JCLI4024.1.

  • Fedorov, A. V., S. L. Harper, S. G. Philander, B. Winter, and A. Wittenberg, 2003: How predictable is El Niño? Bull. Amer. Meteor. Soc., 84, 911919, doi:10.1175/BAMS-84-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., and J. P. Li, 2012: Relationship and mechanism between perturbation potential energy and atmospheric general circulation anomalies. Chin. J. Geophys., 55, 359374, doi:10.1002/cjg2.1730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, L., and J. P. Li, 2013: Impacts and mechanism of diabatic heating on atmospheric perturbation potential energy. Chin. J. Geophys., 56, 32553269, doi:10.6038/cjg20131004.

    • Search Google Scholar
    • Export Citation
  • Gao, L., J. P. Li, and H. L. Ren, 2006: Some characteristics of the atmosphere during an adiabatic process. Prog. Nat. Sci., 16, 644648, doi:10.1080/10020070612330047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and D. E. Harrison, 1990: Aspects of the Kelvin wave response to episodic wind forcing. J. Geophys. Res., 95, 72897312, doi:10.1029/JC095iC05p07289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and D. E. Harrison, 1991: Eastern equatorial Pacific response to three composite westerly wind types. J. Geophys. Res., 96, 32393248, doi:10.1029/90JC01861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and S. G. Philander, 2000: The energetics of El Niño and La Niña. J. Climate, 13, 14961516, doi:10.1175/1520-0442(2000)013<1496:TEOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1975: On ocean spindown I: A linear experiment. J. Phys. Oceanogr., 5, 399409, doi:10.1175/1520-0485(1975)005<0399:OOSIAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. M. Chiodi, 2009: Pre-and post-1997/98 westerly wind events and equatorial Pacific cold tongue warming. J. Climate, 22, 568581, doi:10.1175/2008JCLI2270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, doi:10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett., 41, 46544663, doi:10.1002/2014GL059573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, doi:10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1970: The available potential energy of storms. J. Atmos. Sci., 27, 727741, doi:10.1175/1520-0469(1970)027<0727:TAPEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 2003: The nature and causes for the delayed atmospheric response to El Niño. J. Climate, 16, 13911403, doi:10.1175/1520-0442-16.9.1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J.-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, doi:10.1007/s00382-004-0457-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and L. Gao, 2006: Theory on perturbation potential energy and its applications—Concept, expression and spatiotemporal structures of perturbation potential energy (in Chinese). Chin. J. Atmos. Sci., 30, 834848.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., Z. Sen, L. Yanjie, W. Lei, and S. Cheng, 2016: On the role of perturbation potential energy in variability of the East Asian summer monsoon: Current status and prospects. Adv. Earth Sci., 31, 115125, doi:10.11867/j.issn.1001-8166.2016.02.0115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., M. T. Chahine, X. Jiang, and Y. L. Yung, 2011: The mechanical energies of the global atmosphere in El Niño and La Niña years. J. Atmos. Sci., 68, 30723078, doi:10.1175/JAS-D-11-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., B. P. Kirtman, E. Tziperman, and G. Gebbie, 2013: Impact of interactive westerly wind bursts on CCSM3. Dyn. Atmos. Oceans, 59, 2451, doi:10.1016/j.dynatmoce.2012.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, doi:10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Margules, M., 1910: Uber die energie der stiirme (On the energy of storms). Smithson. Misc. Collect., 51, 533595.

  • McCreary, J. P., 1976: Eastern tropical ocean response to changing wind systems: With application to El Niño. J. Phys. Oceanogr., 6, 632645, doi:10.1175/1520-0485(1976)006<0632:ETORTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26, 29612964, doi:10.1029/1999GL004901.

  • McPhaden, M. J., H. P. Freitag, S. P. Hayes, and B. A. Taft, 1988: The response of the equatorial Pacific Ocean to westerly wind burst in May 1986. J. Geophys. Res., 93, 10 58910 603, doi:10.1029/JC093iC09p10589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, D. W., and S. G. H. Philander, 1977: Modeling of the tropical oceanic circulation. Marine Modeling, E. D. Goldberg et al., Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas., Vol. 6, Wiley, 319–361.

  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, doi:10.1029/97JC03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483493, doi:10.1175/1520-0493(1964)092<0483:OEOTAE>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1971: The observed annual cycle in the meridional transport of atmospheric energy. J. Atmos. Sci., 28, 325339, doi:10.1175/1520-0469(1971)028<0325:TOACIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oort, A. H., S. C. Ascher, S. Levitus, and J. P. Peixóto, 1989: New estimates of the available potential energy in the world ocean. J. Geophys. Res., 94, 31873200, doi:10.1029/JC094iC03p03187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y. H., and A. H. Oort, 1983: Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–73 period. Mon. Wea. Rev., 111, 12441258, doi:10.1175/1520-0493(1983)111<1244:GCVCWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1974: The annual distribution of atmospheric energy on a planetary scale. J. Geophys. Res., 79, 21492159, doi:10.1029/JC079i015p02149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G., and A. Fedorov, 2003: Is El Niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci., 31, 579594, doi:10.1146/annurev.earth.31.100901.141255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. Du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, doi:10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, G. C., K. S. Gage, and J. R. McAfee, 1989: The thermal response of the tropical atmosphere to variations in equatorial Pacific sea surface temperature. J. Geophys. Res., 94, 14 70514 716, doi:10.1029/JD094iD12p14705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. J., 1969: On the contribution of a limited region to the global energy budget. Tellus, 21, 202207, doi:10.1111/j.2153-3490.1969.tb00432.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. J., D. G. Vincent, and H. J. Edmon, 1977: The time dependence of reference pressure in limited region available potential energy budget equations. Tellus, 29, 476480, doi:10.1111/j.2153-3490.1977.tb00759.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and J. E. Meyerson, 2005: Mechanisms for lagged atmospheric response to ENSO SST forcing. J. Climate, 18, 41954215, doi:10.1175/JCLI3514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40, 957982, doi:10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 18141830, doi:10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., J. P. Li, and Y. Guo, 2012: Governing equations of atmospheric layer perturbation potential energy and its applications—Energy budget of the South China Sea summer monsoon activity. Chin. J. Atmos. Sci., 36, 769783.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J. Li, Z. Wang, Y. Li, and F. Zheng, 2015: The oscillation of the perturbation potential energy between the extra-tropics and tropics in boreal winter. Atmos. Sci. Lett., 16, 119126, doi:10.1002/asl2.532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. A. Wang, 1997: Western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24, 779782, doi:10.1029/97GL00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, doi:10.1029/2002JC001498.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 434 136 9
PDF Downloads 201 60 9