Tropical Precipitation and Cross-Equatorial Ocean Heat Transport during the Mid-Holocene

Xiaojuan Liu Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Xiaojuan Liu in
Current site
Google Scholar
PubMed
Close
,
David S. Battisti Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by David S. Battisti in
Current site
Google Scholar
PubMed
Close
, and
Aaron Donohoe Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Aaron Donohoe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Summertime insolation intensified in the Northern Hemisphere during the mid-Holocene, resulting in enhanced monsoonal precipitation. In this study, the authors examine the changes in the annual-mean tropical precipitation as well as changes in atmospheric circulation and upper-ocean circulation in the mid-Holocene compared to the preindustrial climate, as simulated by 12 coupled climate models from PMIP3. In addition to the predominant zonally asymmetric changes in tropical precipitation, there is a small northward shift in the location of intense zonal-mean precipitation (mean ITCZ) in the mid-Holocene in the majority (9 out of 12) of the coupled climate models. In contrast, the shift is southward in simulations using an atmospheric model coupled to a slab ocean. The northward mean ITCZ shift in the coupled simulations is due to enhanced northward ocean heat transport across the equator [OHT(EQ)], which demands a compensating southward atmospheric energy transport across the equator, accomplished by shifting the Hadley cell and hence the mean ITCZ northward. The increased northward OHT(EQ) is primarily accomplished by changes in the upper-ocean gyre circulation in the tropical Pacific acting on the zonally asymmetric climatological temperature distribution. The gyre intensification results from the intensification of the monsoonal winds in the Northern Hemisphere and the weakening of the winds in the Southern Hemisphere, both of which are forced directly by the insolation changes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Xiaojuan Liu, xjliu@uw.edu

Abstract

Summertime insolation intensified in the Northern Hemisphere during the mid-Holocene, resulting in enhanced monsoonal precipitation. In this study, the authors examine the changes in the annual-mean tropical precipitation as well as changes in atmospheric circulation and upper-ocean circulation in the mid-Holocene compared to the preindustrial climate, as simulated by 12 coupled climate models from PMIP3. In addition to the predominant zonally asymmetric changes in tropical precipitation, there is a small northward shift in the location of intense zonal-mean precipitation (mean ITCZ) in the mid-Holocene in the majority (9 out of 12) of the coupled climate models. In contrast, the shift is southward in simulations using an atmospheric model coupled to a slab ocean. The northward mean ITCZ shift in the coupled simulations is due to enhanced northward ocean heat transport across the equator [OHT(EQ)], which demands a compensating southward atmospheric energy transport across the equator, accomplished by shifting the Hadley cell and hence the mean ITCZ northward. The increased northward OHT(EQ) is primarily accomplished by changes in the upper-ocean gyre circulation in the tropical Pacific acting on the zonally asymmetric climatological temperature distribution. The gyre intensification results from the intensification of the monsoonal winds in the Northern Hemisphere and the weakening of the winds in the Southern Hemisphere, both of which are forced directly by the insolation changes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Xiaojuan Liu, xjliu@uw.edu
Save
  • Arbuszewski, J. A., P. B. deMenocal, C. Cléroux, L. Bradtmiller, and Alan Mix, 2013: Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum. Nat. Geosci., 6, 959962, doi:10.1038/ngeo1961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land System Model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561576, doi:10.1007/s00376-012-2113-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlein, P., and Coauthors, 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775802, doi:10.1007/s00382-010-0904-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D., Q. Ding, and G. Roe, 2014: Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. J. Geophys. Res. Atmos., 119, 11 99712 020, doi:10.1002/2014JD021960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, doi:10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and R. L. Korty, 2016: Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci., 9, 892897, doi:10.1038/ngeo2833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, doi:10.1038/ngeo248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosmans, J., S. Drijfhout, E. Tuenter, L. Lourens, F. Hilgen, and S. Weber, 2012: Monsoonal response to mid-Holocene orbital forcing in a high resolution GCM. Climate Past, 8, 723740, doi:10.5194/cp-8-723-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., O. Marti, S. Joussaume, and Y. Leclainche, 2000: Ocean feedback in response to 6 kyr BP insolation. J. Climate, 13, 15371553, doi:10.1175/1520-0442(2000)013<1537:OFIRTK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007a: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, doi:10.5194/cp-3-261-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007b: Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279296, doi:10.5194/cp-3-279-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417424, doi:10.1038/nclimate1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., A. Hall, and A. Broccoli, 2004: The importance of precessional signals in the tropical climate. Climate Dyn., 22, 327341, doi:10.1007/s00382-003-0375-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J. A., and Coauthors, 2011a: Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nat. Geosci., 4, 4245, doi:10.1038/ngeo1039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W., and Coauthors, 2011b: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, doi:10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, doi:10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, doi:10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29A, 339359, doi:10.1016/0198-0149(82)90099-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haug, G. H., K. A. Hughen, D. M. Sigman, L. C. Peterson, and U. Röhl, 2001: Southward migration of the intertropical convergence zone through the Holocene. Science, 293, 13041308, doi:10.1126/science.1059725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, Y.-H., C. Chou, and K.-Y. Wei, 2010: Land–ocean asymmetry of tropical precipitation changes in the mid-Holocene. J. Climate, 23, 41334151, doi:10.1175/2010JCLI3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolly, D., S. Harrison, B. Damnati, and R. Bonnefille, 1998: Simulated climate and biomes of Africa during the late Quaternary: Comparison with pollen and lake status data. Quat. Sci. Rev., 17, 629657, doi:10.1016/S0277-3791(98)00015-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543570, doi:10.5194/gmd-4-543-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joussaume, S., and Coauthors, 1999: Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys. Res. Lett., 26, 859862, doi:10.1029/1999GL900126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and P. J. Guetter, 1986: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years. J. Atmos. Sci., 43, 17261759, doi:10.1175/1520-0469(1986)043<1726:TIOCOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeGrande, A. N., and G. A. Schmidt, 2009: Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Climate Past, 5, 441455, doi:10.5194/cp-5-441-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, doi:10.1007/s00376-012-2140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and D. S. Battisti, 2015: The influence of orbital forcing of tropical insolation on the climate and isotopic composition of precipitation in South America. J. Climate, 28, 48414862, doi:10.1175/JCLI-D-14-00639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucarini, V., and F. Ragone, 2011: Energetics of climate models: Net energy balance and meridional enthalpy transport. Rev. Geophys., 49, RG1001, doi:10.1029/2009RG000323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., A. C. Clement, A. J. Broccoli, and M. P. Erb, 2011: Climate feedbacks in response to changes in obliquity. J. Climate, 24, 28302845, doi:10.1175/2010JCLI3986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127, doi:10.1016/S1463-5003(02)00015-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGee, D., A. Donohoe, J. Marshall, and D. Ferreira, 2014: Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett., 390, 6979, doi:10.1016/j.epsl.2013.12.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paillard, D., 2010: Climate and the orbital parameters of the earth. C. R. Geosci., 342, 273285, doi:10.1016/j.crte.2009.12.006.

  • Phipps, S., L. Rotstayn, H. Gordon, J. Roberts, A. Hirst, and W. Budd, 2011: The CSIRO Mk3L climate system model version 1.0—Part 1: Description and evaluation. Geosci. Model Dev., 4, 483509, doi:10.5194/gmd-4-483-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prado, L. F., I. Wainer, and C. M. Chiessi, 2013: Mid-Holocene PMIP3/CMIP5 model results: Intercomparison for the South American monsoon system. Holocene, 23, 19151920, doi:10.1177/0959683613505336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prive, N. C., and R. A. Plumb, 2007a: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 14171430, doi:10.1175/JAS3916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prive, N. C., and R. A. Plumb, 2007b: Monsoon dynamics with interactive forcing. Part II: Impact of eddies and asymmetric geometries. J. Atmos. Sci., 64, 14311442, doi:10.1175/JAS3917.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raddatz, T., and Coauthors, 2007: Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565574, doi:10.1007/s00382-007-0247-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., M. A. Collier, M. R. Dix, Y. Feng, H. B. Gordon, S. P. O’Farrell, I. N. Smith, and J. Syktus, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int. J. Climatol., 30, 10671088, doi:10.1002/joc.1952.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192, doi:10.1175/JCLI3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, doi:10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Street, F. A., and A. Grove, 1976: Environmental and climatic implications of late Quaternary lake-level fluctuations in Africa. Nature, 261, 385390, doi:10.1038/261385a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and R. L. Naylor, 2010: Downscaling Indonesian precipitation using large-scale meteorological fields. Int. J. Climatol., 30, 17061722, doi:10.1002/joc.2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM: Model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev., 4, 845872, doi:10.5194/gmd-4-845-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, X., W. Tong-Wen, and Z. Jie, 2013: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Adv. Climate Change Res., 4, 4149, doi:10.3724/SP.J.1248.2013.00041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 728 214 15
PDF Downloads 514 110 11