Quantifying the Sensitivity of Precipitation to the Long-Term Warming Trend and Interannual–Decadal Variation of Surface Air Temperature over China

Chunlüe Zhou College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Chunlüe Zhou in
Current site
Google Scholar
PubMed
Close
and
Kaicun Wang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Kaicun Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation is expected to increase under global warming. However, large discrepancies in precipitation sensitivities to global warming among observations and models have been reported, partly owing to the large natural variability of precipitation, which accounts for over 90% of its total variance in China. Here, the authors first elucidated precipitation sensitivities to the long-term warming trend and interannual–decadal variations of surface air temperature Ta over China based on daily data from approximately 2000 stations from 1961 to 2014. The results show that the number of dry, trace, and light precipitation days has stronger sensitivities to the warming trend than to the Ta interannual–decadal variation, with 14.1%, −35.7%, and −14.6% K−1 versus 2.7%, −7.9%, and −3.1% K−1, respectively. Total precipitation frequency has significant sensitivities to the warming trend (−18.5% K−1) and the Ta interannual–decadal variation (−3.6% K−1) over China. However, very heavy precipitation frequencies exhibit larger sensitivities to the Ta interannual–decadal variation than to the long-term trend over Northwest and Northeast China and the Tibetan Plateau. A warming trend boosts precipitation intensity, especially for light precipitation (9.8% K−1). Total precipitation intensity increases significantly by 13.1% K−1 in response to the warming trend and by 3.3% K−1 in response to the Ta interannual–decadal variation. Very heavy precipitation intensity also shows significant sensitivity to the interannual–decadal variation of Ta (3.7% K−1), particularly in the cold season (8.0% K−1). Combining precipitation frequency and intensity, total precipitation amount has a negligible sensitivity to the warming trend, and the consequent trend in China is limited. Moderate and heavy precipitation amounts are dominated by their frequencies.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0515.s1.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kaicun Wang, kcwang@bnu.edu.cn

Abstract

Precipitation is expected to increase under global warming. However, large discrepancies in precipitation sensitivities to global warming among observations and models have been reported, partly owing to the large natural variability of precipitation, which accounts for over 90% of its total variance in China. Here, the authors first elucidated precipitation sensitivities to the long-term warming trend and interannual–decadal variations of surface air temperature Ta over China based on daily data from approximately 2000 stations from 1961 to 2014. The results show that the number of dry, trace, and light precipitation days has stronger sensitivities to the warming trend than to the Ta interannual–decadal variation, with 14.1%, −35.7%, and −14.6% K−1 versus 2.7%, −7.9%, and −3.1% K−1, respectively. Total precipitation frequency has significant sensitivities to the warming trend (−18.5% K−1) and the Ta interannual–decadal variation (−3.6% K−1) over China. However, very heavy precipitation frequencies exhibit larger sensitivities to the Ta interannual–decadal variation than to the long-term trend over Northwest and Northeast China and the Tibetan Plateau. A warming trend boosts precipitation intensity, especially for light precipitation (9.8% K−1). Total precipitation intensity increases significantly by 13.1% K−1 in response to the warming trend and by 3.3% K−1 in response to the Ta interannual–decadal variation. Very heavy precipitation intensity also shows significant sensitivity to the interannual–decadal variation of Ta (3.7% K−1), particularly in the cold season (8.0% K−1). Combining precipitation frequency and intensity, total precipitation amount has a negligible sensitivity to the warming trend, and the consequent trend in China is limited. Moderate and heavy precipitation amounts are dominated by their frequencies.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0515.s1.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kaicun Wang, kcwang@bnu.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 890.55 KB)
Save
  • Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y., U. Lohmann, J. Zhang, Y. Luo, Z. Liu, and G. Lesins, 2005: Contribution of changes in sea surface temperature and aerosol loading to the decreasing precipitation trend in southern China. J. Climate, 18, 13811390, doi:10.1175/JCLI3341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J.-Y. Tu, 2008: Hemispherical asymmetry of tropical precipitation in ECHAM5/MPI-OM during El Niño and under global warming. J. Climate, 21, 13091332, doi:10.1175/2007JCLI1928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., C.-A. Chen, P.-H. Tan, and K. T. Chen, 2012: Mechanisms for global warming impacts on precipitation frequency and intensity. J. Climate, 25, 32913306, doi:10.1175/JCLI-D-11-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, doi:10.1038/ngeo1744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conroy, J. L., A. Restrepo, J. T. Overpeck, M. Steinitz-Kannan, J. E. Cole, M. B. Bush, and P. A. Colinvaux, 2009: Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nat. Geosci., 2, 4650, doi:10.1038/ngeo390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 526–582.

  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14, 10921111, doi:10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2016: Future warming patterns linked to today’s climate variability. Sci. Rep., 6, 19110, doi:10.1038/srep19110.

  • Dai, A., and T. Wigley, 2000: Global patterns of ENSO‐induced precipitation. Geophys. Res. Lett., 27, 12831286, doi:10.1029/1999GL011140.

  • Dalton, M. M., and K. M. Shell, 2013: Comparison of short-term and long-term radiative feedbacks and variability in twentieth-century global climate model simulations. J. Climate, 26, 10 05110 070, doi:10.1175/JCLI-D-12-00564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deangelis, A. M., X. Qu, M. D. Zelinka, and A. Hall, 2015: An observational radiative constraint on hydrologic cycle intensification. Nature, 528, 249253, doi:10.1038/nature15770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci., 7, 583587, doi:10.1038/ngeo2201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denniston, R. F., and Coauthors, 2015: Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. Proc. Natl. Acad. Sci. USA, 112, 45764581, doi:10.1073/pnas.1422270112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, doi:10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. Ogorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 6, 508513, doi:10.1038/nclimate2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, doi:10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. CRC Press, 456 pp.

    • Crossref
    • Export Citation
  • Emori, S., and S. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, C., and L. Dan, 2014: Trends in the different grades of precipitation over south China during 1960–2010 and the possible link with anthropogenic aerosols. Adv. Atmos. Sci., 31, 480491, doi:10.1007/s00376-013-2102-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun., 6, 6443, doi:10.1038/ncomms7443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D.-Q., J. Zhu, Y.-C. Zhang, Y. Huang, and X.-Y. Kuang, 2016: Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Quart. J. Roy. Meteor. Soc., 142, 108119, doi:10.1002/qj.2634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 1465 pp. [Available online at Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_full.pdf.]

  • Jiang, Z., Y. Shen, T. Ma, P. Zhai, and S. Fang, 2014: Changes of precipitation intensity spectra in different regions of mainland China during 1961–2006. J. Meteor. Res., 28, 10851098, doi:10.1007/s13351-014-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241, doi:10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, doi:10.1175/JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., G. A. Meehl, M. R. Allen, and D. A. Stainforth, 2006: Constraining climate sensitivity from the seasonal cycle in surface temperature. J. Climate, 19, 42244233, doi:10.1175/JCLI3865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krzywinski, M., and N. Altman, 2014: Points of significance: Visualizing samples with box plots. Nat. Methods, 11, 119120, doi:10.1038/nmeth.2813.

  • Kulesa, A., M. Krzywinski, P. Blainey, and N. Altman, 2015: Points of significance: Sampling distributions and the bootstrap. Nat. Methods, 12, 477478, doi:10.1038/nmeth.3414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. Van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511514, doi:10.1038/ngeo262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and E. Van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett., 5, 025208, doi:10.1088/1748-9326/5/2/025208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., M. Xu, M. Henderson, and Y. Qi, 2005: Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res., 110, D08103, doi:10.1029/2004JD004864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C. L., and R. P. Allan, 2012: Multisatellite observed responses of precipitation and its extremes to interannual climate variability. J. Geophys. Res., 117, D03101, doi:10.1029/2011JD016568.

    • Search Google Scholar
    • Export Citation
  • Liu, R., S. C. Liu, R. J. Cicerone, C.-J. Shiu, J. Li, J. Wang, and Y. Zhang, 2015: Trends of extreme precipitation in eastern China and their possible causes. Adv. Atmos. Sci., 32, 10271037, doi:10.1007/s00376-015-5002-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S. C., C. Fu, C.-J. Shiu, J.-P. Chen, and F. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, doi:10.1029/2009GL040218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, A. Dai, and Z. Han, 2015: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. J. Climate, 28, 69606978, doi:10.1175/JCLI-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martı́nez-Casasnovas, J. A., M. C. Ramos, and M. Ribes-Dasi, 2002: Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma, 105, 125140, doi:10.1016/S0016-7061(01)00096-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., and C. Bonfils, 2013: Identifying external influences on global precipitation. Proc. Natl. Acad. Sci. USA, 110, 19 30119 306, doi:10.1073/pnas.1314382110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, doi:10.1126/science.1075159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, doi:10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A., and S. C. Liu, 2014: Changes in precipitation pattern and risk of drought over India in the context of global warming. J. Geophys. Res. Atmos., 119, 78337841, doi:10.1002/2014JD021471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., 1973: Gamma distribution probability model for Asian summer monsoon monthly rainfall. Mon. Wea. Rev., 101, 160176, doi:10.1175/1520-0493(1973)101<0160:GDPMFA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700, doi:10.1038/ngeo1568.

  • O’Gorman, P. A., and T. Schneider, 2009a: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685, doi:10.1175/2009JCLI2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009b: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, doi:10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Podobnik, B., and H. E. Stanley, 2008: Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Phys. Rev. Lett., 100, 084102, doi:10.1103/PhysRevLett.100.084102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., D. Gong, J. Fan, L. R. Leung, R. Bennartz, D. Chen, and W. Wang, 2009: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114, D00K02, doi:10.1029/2008JD011575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiu, C.-J., S. C. Liu, C. Fu, A. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, doi:10.1029/2012GL052762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siswanto, G. J. van Oldenborgh, G. van der Schrier, G. Lenderink, and B. van den Hurk, 2015: Trends in high-daily precipitation events in Jakarta and the flooding of January 2014 [in “Explaining Extreme Events of 2014”]. Bull. Amer. Meteor. Soc., 96 (12), S131S135, doi:10.1175/BAMS-D-15-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., X. Yin, and A. Gruber, 2006: Variations in annual global precipitation (1979–2004), based on the Global Precipitation Climatology Project 2.5° analysis. Geophys. Res. Lett., 33, L06705, doi:10.1029/2005GL025393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155, doi:10.1175/2008JCLI2144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, doi:10.1175/JCLI4263.1.

  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667694, doi:10.1023/A:1005319109110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, doi:10.1029/2005GL022760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, doi:10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veizer, J., Y. Godderis, and L. M. Francois, 2000: Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408, 698701, doi:10.1038/35047044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., 2001: The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 18, 376386, doi:10.1007/BF02919316.

  • Wang, H., and H. P. Chen, 2012: Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon? J. Geophys. Res., 117, D12109, doi:10.1029/2012JD017734.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, and R. Huang, 2009a: Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway. J. Climate, 22, 600614, doi:10.1175/2008JCLI2295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., R. Huang, L. Gu, W. Chen, and L. Kang, 2009b: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22, 48604872, doi:10.1175/2009JCLI2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large‐scale circulation. Geophys. Res. Lett., 32, L09707, doi:10.1029/2005GL023769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., P. L. Ma, J. H. Jiang, H. Su, and P. J. Rasch, 2016: Toward reconciling the influence of atmospheric aerosols and greenhouse gases on light precipitation changes in eastern China. J. Geophys. Res. Atmos., 121, 58785887, doi:10.1002/2016JD024845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., and A. Sharma, 2015: Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci., 8, 527529, doi:10.1038/ngeo2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, doi:10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short‐duration extreme rainfall. Rev. Geophys., 52, 522555, doi:10.1002/2014RG000464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., J. Chen, and Z. Wen, 2013: Precipitation-surface temperature relationship in the IPCC CMIP5 models. Adv. Atmos. Sci., 30, 766778, doi:10.1007/s00376-012-2130-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2001: Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution. Atmos. Environ., 35, 50295040, doi:10.1016/S1352-2310(01)00315-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P., X. Zhang, H. Wan, and X. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, doi:10.1175/JCLI-3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., X. H. Zhu, K. Fraedrich, F. Sielmann, and X. F. Zhi, 2014: Interdecadal variability of winter precipitation in southeast China. Climate Dyn., 43, 22392248, doi:10.1007/s00382-014-2048-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461465, doi:10.1038/nature06025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C. S., X. X. Tie, and Y. P. Lin, 2006: A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys. Res. Lett., 33, L11816, doi:10.1029/2006GL025959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, Y. Tian, R. S. Vose, and Y. Dai, 2007: Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel. Proc. Natl. Acad. Sci. USA, 104, 17 93717 942, doi:10.1073/pnas.0700290104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L.-T., and R.-H. Huang, 2010: Interdecadal variability of summer rainfall in northwest China and its possible causes. Int. J. Climatol., 30, 549557, doi:10.1002/joc.1923.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 574 127 6
PDF Downloads 413 93 4