Observed Variability of Cloud Frequency and Cloud-Base Height within 3600 m above the Surface over the Contiguous United States

Ning An College of Global Change and Earth System Science, Beijing Normal University, Beijing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Ning An in
Current site
Google Scholar
PubMed
Close
,
Kaicun Wang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Kaicun Wang in
Current site
Google Scholar
PubMed
Close
,
Chunlüe Zhou College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Chunlüe Zhou in
Current site
Google Scholar
PubMed
Close
, and
Rachel T. Pinker Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Rachel T. Pinker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The geographic and temporal variability of the surface–3600-m cloud frequency and cloud-base height over the contiguous United States for a 5-yr period (2008–12) and the interannual variations for a 16-yr period (2000–15) are described using information from the Automated Surface Observing System (ASOS) observations. Clouds were separated into four categories by the cloud amount reported by ASOS: few (FEW), scattered (SCT), broken (BKN), and overcast (OVC). The geographic distributions and seasonal and diurnal cycles of the four categories of surface–3600-m cloud frequency have different patterns. Cloud frequency of FEW, SCT, and BKN peaks just after noon, whereas the frequency of OVC peaks in the early morning. However, the geographic distributions and seasonal and diurnal cycles of the four categories of the surface–3600-m cloud-base height are similar. The diurnal cycles of the cloud-base height within the surface–3600-m level present a minimum in the morning and peak in the late afternoon or early evening. Cloud frequency and cloud-base height within this range are closely related to surface air temperature and humidity conditions. From 2000 to 2015, the cloud frequency in the contiguous United States showed a positive trend of 0.28% yr−1 while the cloud-base height showed a negative trend of −4 m yr−1 for the surface–3600-m level, accompanied with a positive trend of precipitation days (0.14 days yr−1). Moreover, the increase of cloud frequency and the decrease of cloud-base height were most obvious in winter in the eastern half of the contiguous United States.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Kaicun Wang, kcwang@bnu.edu.cn

Abstract

The geographic and temporal variability of the surface–3600-m cloud frequency and cloud-base height over the contiguous United States for a 5-yr period (2008–12) and the interannual variations for a 16-yr period (2000–15) are described using information from the Automated Surface Observing System (ASOS) observations. Clouds were separated into four categories by the cloud amount reported by ASOS: few (FEW), scattered (SCT), broken (BKN), and overcast (OVC). The geographic distributions and seasonal and diurnal cycles of the four categories of surface–3600-m cloud frequency have different patterns. Cloud frequency of FEW, SCT, and BKN peaks just after noon, whereas the frequency of OVC peaks in the early morning. However, the geographic distributions and seasonal and diurnal cycles of the four categories of the surface–3600-m cloud-base height are similar. The diurnal cycles of the cloud-base height within the surface–3600-m level present a minimum in the morning and peak in the late afternoon or early evening. Cloud frequency and cloud-base height within this range are closely related to surface air temperature and humidity conditions. From 2000 to 2015, the cloud frequency in the contiguous United States showed a positive trend of 0.28% yr−1 while the cloud-base height showed a negative trend of −4 m yr−1 for the surface–3600-m level, accompanied with a positive trend of precipitation days (0.14 days yr−1). Moreover, the increase of cloud frequency and the decrease of cloud-base height were most obvious in winter in the eastern half of the contiguous United States.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Kaicun Wang, kcwang@bnu.edu.cn
Save
  • Bender, F. A., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., and S. Bony, 2012: How may low‐cloud radiative properties simulated in the current climate influence low‐cloud feedbacks under global warming? Geophys. Res. Lett., 39, L20807, doi:10.1029/2012GL053265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, doi:10.1029/JD095iD10p16601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., V. Noel, D. Winker, and M. Chiriaco, 2014: Where and when will we observe cloud changes due to climate warming? Geophys. Res. Lett., 41, 83878395, doi:10.1002/2014GL061792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chernykh, I. V., O. A. Alduchov, and R. E. Eskridge, 2001: Trends in low and high cloud boundaries and errors in height determination of cloud boundaries. Bull. Amer. Meteor. Soc., 82, 19411947, doi:10.1175/1520-0477(2001)082<1941:TILAHC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa-Surós, M., J. Calbó, J. González, and J. Martin-Vide, 2013: Behavior of cloud base height from ceilometer measurements. Atmos. Res., 127, 6476, doi:10.1016/j.atmosres.2013.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa-Surós, M., J. Calbó, J. González, and C. N. Long, 2014: Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements. Atmos. Meas. Tech., 7, 27572773, doi:10.5194/amt-7-2757-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, doi:10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., T. R. Karl, B. Sun, and K. E. Trenberth, 2006: Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87, 597606, doi:10.1175/BAMS-87-5-597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2014: Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean. J. Climate, 27, 23862404, doi:10.1175/JCLI-D-13-00352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., S. G. Warren, and C. J. Hahn, 2011: Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Climate, 24, 59145934, doi:10.1175/2011JCLI3972.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., and I. Gultepe, 2007: Inferring low cloud base heights at night for aviation using satellite infrared and surface temperature data. Pure Appl. Geophys., 164, 11931205, doi:10.1007/s00024-007-0214-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2012: A less cloudy future: The role of subtropical subsidence in climate sensitivity. Science, 338, 792794, doi:10.1126/science.1227465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forsythe, J. M., T. H. Vonder Haar, and D. L. Reinke, 2000: Cloud-base height estimates using a combination of meteorological satellite imagery and surface reports. J. Appl. Meteor., 39, 23362347, doi:10.1175/1520-0450(2000)039<2336:CBHEUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Free, M., and B. Sun, 2013: Time-varying biases in U.S. total cloud cover data. J. Atmos. Oceanic Technol., 30, 28382849, doi:10.1175/JTECH-D-13-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Free, M., and B. Sun, 2014: Trends in U.S. total cloud cover from a homogeneity-adjusted dataset. J. Climate, 27, 49594969, doi:10.1175/JCLI-D-13-00722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., 1992: Continental cloudiness changes this century. GeoJournal, 27, 255262, doi:10.1007/BF02482666.

  • Hutchison, K., 2002: The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from NASA’s EOS Aqua mission. Int. J. Remote Sens., 23, 52495265, doi:10.1080/01431160110117391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013 : Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Kim, S.-W., E.-S. Chung, S.-C. Yoon, B.-J. Sohn, and N. Sugimoto, 2011: Intercomparisons of cloud-top and cloud-base heights from ground-based Lidar, CloudSat and CALIPSO measurements. Int. J. Remote Sens., 32, 11791197, doi:10.1080/01431160903527439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kokhanovsky, A. A., and V. V. Rozanov, 2005: Cloud bottom altitude determination from a satellite. IEEE Trans. Geosci. Remote Sens. Lett., 2, 280283, doi:10.1109/LGRS.2005.846837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., L. E. Stevens, S. E. Stevens, L. Sun, E. Janssen, D. Wuebbles, and J. G. Dobson, 2013: Regional climate trends and scenarios for the U.S. National Climate Assessment: Part 9. Climate of the contiguous United States. NOAA Tech. Rep. NESDIS 142-9, 77 pp. [Available online at https://www.nesdis.noaa.gov/sites/default/files/asset/document/NOAA_NESDIS_Tech_Report_142-9-Climate_of_the_Contiguous_United_States.pdf.]

  • Lee, W.-H., S. F. Iacobellis, and R. C. Somerville, 1997: Cloud radiation forcings and feedbacks: General circulation model tests and observational validation. J. Climate, 10, 24792496, doi:10.1175/1520-0442(1997)010<2479:CRFAFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1994: Fog on the U.S. West Coast: A review. Bull. Amer. Meteor. Soc., 75, 229240, doi:10.1175/1520-0477(1994)075<0229:FOTUWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., Y. Yi, J. Huang, and K. Ayers, 2005: Relationships between radiosonde and RUC‐2 meteorological conditions and cloud occurrence determined from ARM data. J. Geophys. Res., 110, D23204, doi:10.1029/2005JD006005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., 2012: A critical assessment of surface cloud observations and their use for verifying cloud forecasts. Quart. J. Roy. Meteor. Soc., 138, 17941807, doi:10.1002/qj.1918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 1998: Automated Surface Observing System (ASOS) user’s guide. NOAA Rep., 61 pp. [Available online at http://www.nws.noaa.gov/asos/aum-toc.pdf.]

  • Ockert-Bell, M. E., and D. L. Hartmann, 1992: The effect of cloud type on Earth’s energy balance: Results for selected regions. J. Climate, 5, 11571171, doi:10.1175/1520-0442(1992)005<1157:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C., 1989: The role of cloud microphysics in high-cloud feedback effects on climate change. Nature, 341, 428429, doi:10.1038/341428a0.

  • Ramanathan, V., R. Cess, E. Harrison, P. Minnis, B. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, doi:10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, A., and J. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 10271062, doi:10.1002/qj.49711448209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., 2003: Cloudiness over the contiguous United States: Contemporary changes observed using ground‐based and ISCCP D2 data. Geophys. Res. Lett., 30, 1053, doi:10.1029/2002GL015887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and P. Ya. Groisman, 2004: Variations in low cloud cover over the United States during the second half of the twentieth century. J. Climate, 17, 18831888, doi:10.1175/1520-0442(2004)017<1883:VILCCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., P. Ya. Groisman, R. S. Bradley, and F. T. Keimig, 2000: Temporal changes in the observed relationship between cloud cover and surface air temperature. J. Climate, 13, 43414357, doi:10.1175/1520-0442(2000)013<4341:TCITOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., P. Ya. Groisman, and I. I. Mokhov, 2001: Recent changes in cloud-type frequency and inferred increases in convection over the United States and the former USSR. J. Climate, 14, 18641880, doi:10.1175/1520-0442(2001)014<1864:RCICTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., T. R. Karl, and D. J. Seidel, 2007: Changes in cloud-ceiling heights and frequencies over the United States since the early 1950s. J. Climate, 20, 39563970, doi:10.1175/JCLI4213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., M. Free, H. L. Yoo, M. J. Foster, A. Heidinger, and K.-G. Karlsson, 2015: Variability and trends in U.S. cloud cover: ISCCP, PATMOS-x, and CLARA-A1 compared to homogeneity-adjusted weather observations. J. Climate, 28, 43734389, doi:10.1175/JCLI-D-14-00805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323, doi:10.1175/2008BAMS2634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaisala, 1989: Technical manual: Laser ceilometer CT12K. Vaisala Rep., 304 pp. [Available from Vaisala Company, 100 Commerce Way, Woburn, MA 01801.]

  • Vislocky, R. L., and J. M. Fritsch, 1997: An automated, observations-based system for short-term prediction of ceiling and visibility. Wea. Forecasting, 12, 3143, doi:10.1175/1520-0434(1997)012<0031:AAOBSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez‐Mora, A., M. Costa‐Surós, J. Calbó, and J. González, 2015: Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height. J. Geophys. Res. Atmos., 120, 199214, doi:10.1002/2014JD022310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and W. B. Rossow, 1995: Determination of cloud vertical structure from upper-air observations. J. Appl. Meteor., 34, 22432258, doi:10.1175/1520-0450(1995)034<2243:DOCVSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1986: Global distribution of total cloud cover and cloud types over land. NCAR Tech. Note NCAR/TN-273+STR, 29 pp., doi:10.5065/D6GH9FXB.

    • Crossref
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over ocean. NCAR Tech. Note NCAR/TN-317+STR, 42 pp., doi:10.5065/D6QC01D1.

    • Crossref
    • Export Citation
  • Warren, S. G., R. M. Eastman, and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J. Climate, 20, 717738, doi:10.1175/JCLI4031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, R. M., S. Asefi, J. Zeng, U. S. Nair, Q. Han, R. O. Lawton, D. K. Ray, and V. S. Manoharan, 2008: Biogeography of tropical montane cloud forests. Part I: Remote sensing of cloud-base heights. J. Appl. Meteor. Climatol., 47, 960975, doi:10.1175/2007JAMC1668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., R. E. Schwartz, S. Iacobellis, R. Seager, B. I. Cook, C. J. Still, G. Husak, and J. Michaelsen, 2015: Urbanization causes increased cloud base height and decreased fog in coastal Southern California. Geophys. Res. Lett., 42, 15271536, doi:10.1002/2015GL063266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1974: Manual on codes. WMO Publ. 306, Vol. 1, 348 pp. [Available from World Meteorological Organization, Avenue Giuseppe-Motta 41, CP2300, 1211 Geneva 2, Switzerland.]

  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

  • Zhang, J., H. Chen, J. Bian, Y. Xuan, Y. Duan, and M. Cribb, 2012: Development of cloud detection methods using CFH, GTS1, and RS80 radiosondes. Adv. Atmos. Sci., 29, 236248, doi:10.1007/s00376-011-0215-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1747 608 36
PDF Downloads 1145 354 26