Intermember Variability of the Summer Northwest Pacific Subtropical Anticyclone in the Ensemble Forecast

Jing Ma Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, China, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Jing Ma in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
, and
Haiming Xu Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/KLME/ILCEC, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Haiming Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The accurate prediction of the East Asian summer monsoon (EASM) remains a major challenge for the climate research community. The northwest Pacific (NWP) subtropical anticyclone (NWPSA) is the dominant feature of the EASM low-level circulation variability. This study identifies two coupled modes between intermember anomalies of the NWPSA and sea surface temperature (SST). The first mode features SST anomalies over the tropical Pacific. This tropical Pacific mode has little impact on East Asian climate. The second mode features a strong coupling between SST in the north Indian Ocean (NIO)–NWP and NWPSA, with large impacts on East Asia. This resembles the Indo–western Pacific Ocean capacitor (IPOC) mode of interannual variability. Major differences exist in temporal evolution of the intermember SST spread between the equatorial Pacific and NIO. In the equatorial Pacific, the intermember SST spread grows gradually with lead time, while the spread of SST and low-level zonal wind grow rapidly from May to June in the NIO. The rapid growth over the NIO is due to positive feedback arising from the coupling between intermember anomalies of SST and winds. In post–El Niño summer, the intermember spread in equatorial Pacific SST forecast represents the variations in the timing of the El Niño phase transition. The late decay of El Niño relates to SST cooling and an anomalous cyclonic circulation over the South China Sea (SCS) but with little impact on East Asian climate. Thus, a better representation of the IPOC mode of regional ocean–atmosphere interaction over the NIO–NWP holds the key to improving the reliability of seasonal forecast of East Asian climate.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jing Ma, majingmarulai@163.com

Abstract

The accurate prediction of the East Asian summer monsoon (EASM) remains a major challenge for the climate research community. The northwest Pacific (NWP) subtropical anticyclone (NWPSA) is the dominant feature of the EASM low-level circulation variability. This study identifies two coupled modes between intermember anomalies of the NWPSA and sea surface temperature (SST). The first mode features SST anomalies over the tropical Pacific. This tropical Pacific mode has little impact on East Asian climate. The second mode features a strong coupling between SST in the north Indian Ocean (NIO)–NWP and NWPSA, with large impacts on East Asia. This resembles the Indo–western Pacific Ocean capacitor (IPOC) mode of interannual variability. Major differences exist in temporal evolution of the intermember SST spread between the equatorial Pacific and NIO. In the equatorial Pacific, the intermember SST spread grows gradually with lead time, while the spread of SST and low-level zonal wind grow rapidly from May to June in the NIO. The rapid growth over the NIO is due to positive feedback arising from the coupling between intermember anomalies of SST and winds. In post–El Niño summer, the intermember spread in equatorial Pacific SST forecast represents the variations in the timing of the El Niño phase transition. The late decay of El Niño relates to SST cooling and an anomalous cyclonic circulation over the South China Sea (SCS) but with little impact on East Asian climate. Thus, a better representation of the IPOC mode of regional ocean–atmosphere interaction over the NIO–NWP holds the key to improving the reliability of seasonal forecast of East Asian climate.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jing Ma, majingmarulai@163.com
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, doi:10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, doi:10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. K. Park, B. W. Dong, R. Y. Lu, and W. S. Jung, 2012: The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res., 117, D12111, doi:10.1029/2011JD017385.

    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Y. Lee, K. J. Ha, K. S. Yun, and R. Y. Lu, 2016: Intensification of the western North Pacific anticyclone response to the short decaying El Niño event due to greenhouse warming. J. Climate, 29, 36073627, doi:10.1175/JCLI-D-15-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z. S., Z. P. Wen, R. G. Wu, X. B. Lin, and J. B. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, doi:10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S. P. Xie, J. Y. Lee, Y. Kosaka, and B. Wang, 2010: Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: Local and remote forcing. J. Geophys. Res., 115, D22121, doi:10.1029/2010JD014595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S. P. Xie, J. J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607621, doi:10.1007/s00382-009-0686-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., C. Gnanaseelan, and S. Chakravorty, 2013: Impact of northwest Pacific anticyclone on the Indian summer monsoon region. Theor. Appl. Climatol., 113, 329336, doi:10.1007/s00704-012-0785-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, C. Gnanaseelan, and P. Sreenivas, 2014: Inter-decadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: Special emphasis on decay phase of El Niño. Global Planet. Change, 112, 3340, doi:10.1016/j.gloplacha.2013.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., H. S. Harsha, C. Gnanaseelan, G. Srinivas, A. Parekh, P. A. Pillai, and C. V. Naidu, 2017: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dyn., 48, 27072727, doi:10.1007/s00382-016-3233-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393408, doi:10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, doi:10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L., S. I. Shin, Q. Y. Liu, and Z. Y. Liu, 2013: Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys. Res. Lett., 40, 24712477, doi:10.1002/grl.50494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., K. M. Hu, and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the mid-1970s: An atmospheric GCM study. J. Climate, 23, 52945304, doi:10.1175/2010JCLI3577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., and Y. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, doi:10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S. P. Xie, N. C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, doi:10.1073/pnas.1215582110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K., K. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, doi:10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329346, doi:10.1007/s00382-011-1274-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C. F., R. Y. Lu, and B. W. Dong, 2014: Predictability of the western North Pacific summer climate associated with different ENSO phases by ENSEMBLES multi-model seasonal forecasts. Climate Dyn., 43, 18291845, doi:10.1007/s00382-013-2010-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., R. C. Ren, M. Cai, and G. X. Wu, 2012: Attribution of the summer warming since 1970s in Indian Ocean Basin to the inter-decadal change in the seasonal timing of El Niño decay phase. Geophys. Res. Lett., 39, L12702, doi:10.1029/2012GL052150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C. Y., J. Y. Yu, and H. H. Hsu, 2015: CMIP5 model simulations of the Pacific meridional mode and its connection to the two types of ENSO. Int. J. Climatol., 35, 23522358, doi:10.1002/joc.4130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., and S. P. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. J. Atmos. Sci., 51, 38073822, doi:10.1175/1520-0469(1994)051<3807:EPOCAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Japan, 79, 771783, doi:10.2151/jmsj.79.771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impacts on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 165171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2006: A role of zonal gradient of SST between the Indian Ocean and the western Pacific in localized convection around the Philippines. SOLA, 2, 176179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369432, doi:10.2151/jmsj.85.369.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, doi:10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X. S., M. Kimoto, A. Sumi, A. Numaguti, and J. Matsumoto, 2001: Simulation of the 1998 East Asian summer monsoon by the CCSR/NIES AGCM. J. Meteor. Soc. Japan, 79, 741757, doi:10.2151/jmsj.79.741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terao, T., and T. Kubota, 2005: East–west SST contrast over the tropical oceans and the post El Niño western North Pacific summer monsoon. Geophys. Res. Lett., 32, L15706, doi:10.1029/2005GL023010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terao, T., F. Murata, A. Habib, M. S. H. Bhuiyan, S. A. Choudhury, and T. Hayashi, 2013: Impacts of rapid warm-to-cold ENSO transitions on summer monsoon rainfall over the northeastern Indian subcontinent. J. Meteor. Soc. Japan, 91, 121, doi:10.2151/jmsj.2013-101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Linden, P., and J. F. B. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impact: Summary of research and results from ENSEMBLES project. Met Office Hadley Centre Rep., 160 pp.

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and midlatitudes. Geophys. Res. Lett., 28, 39233926, doi:10.1029/2001GL013435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea-surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2008: How accurately do coupled climate models predict the leading modes of Asian–Australian monsoon interannual variability? Climate Dyn., 30, 605619, doi:10.1007/s00382-007-0310-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Q. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 27182722, doi:10.1073/pnas.1214626110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi:10.1029/2009GL040896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. J. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, doi:10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and H. Z. Liu, 1995: Neighborhood response of rainfall to tropical sea surface temperature anomalies. Part I: Numerical experiment (in Chinese). Chin. J. Atmos. Sci., 19, 422434.

    • Search Google Scholar
    • Export Citation
  • Wu, S., L. Wu, Q. Liu, and S.-P. Xie, 2010: Development processes of the tropical Pacific meridional mode. Adv. Atmos. Sci., 27, 9599, doi:10.1007/s00376-009-8067-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12, 6470, doi:10.1175/1520-0442-12.1.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, doi:10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Z.-Q. Zhou, 2017: Seasonal modulations of El Niño–related atmospheric variability: Indo–western Pacific Ocean feedback. J. Climate, 30, 34613472, doi:10.1175/JCLI-D-16-0713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, doi:10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, doi:10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J. L., Q. Y. Liu, S.-P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, doi:10.1175/2010JCLI3688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Nino on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92 events. J. Meteor. Soc. Japan, 74, 4962.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 496 181 14
PDF Downloads 365 111 8