Changes in Northern Hemisphere Winter Storm Tracks under the Background of Arctic Amplification

Jiabao Wang School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Jiabao Wang in
Current site
Google Scholar
PubMed
Close
,
Hye-Mi Kim School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Hye-Mi Kim in
Current site
Google Scholar
PubMed
Close
, and
Edmund K. M. Chang School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Edmund K. M. Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An interdecadal weakening in the North Atlantic storm track (NAST) and a poleward shift of the North Pacific storm track (NPST) are found during October–March for the period 1979–2015. A significant warming of surface air temperature (Ts) over northeastern North America and a La Niña–like change in the North Pacific under the background of Arctic amplification are found to be the contributors to the observed changes in the NAST and the NPST, respectively, via modulation of local baroclinicity. The interdecadal change in baroclinic energy conversion is consistent with changes in storm tracks with an energy loss from eddies to mean flow over the North Atlantic and an energy gain over the North Pacific. The analysis of simulations from the Community Earth System Model Large Ensemble project, although with some biases in storm-track and Ts simulations, supports the observed relationship between the NAST and Ts over northeastern North America, as well as the link between the NPST and El Niño–Southern Oscillation. The near-future projections of Ts and storm tracks are characterized by a warmer planet under the influence of increasing greenhouse gases and a significant weakening of both the NAST and the NPST. The potential role of the NAST in redistributing changes in Ts over the surrounding regions is also examined. The anomalous equatorward moisture flux associated with the weakening trend of the NAST would enhance the warming over its upstream region and hinder the warming over its downstream region via modulation of the downward infrared radiation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Hye-Mi Kim, hyemi.kim@stonybrook.edu

Abstract

An interdecadal weakening in the North Atlantic storm track (NAST) and a poleward shift of the North Pacific storm track (NPST) are found during October–March for the period 1979–2015. A significant warming of surface air temperature (Ts) over northeastern North America and a La Niña–like change in the North Pacific under the background of Arctic amplification are found to be the contributors to the observed changes in the NAST and the NPST, respectively, via modulation of local baroclinicity. The interdecadal change in baroclinic energy conversion is consistent with changes in storm tracks with an energy loss from eddies to mean flow over the North Atlantic and an energy gain over the North Pacific. The analysis of simulations from the Community Earth System Model Large Ensemble project, although with some biases in storm-track and Ts simulations, supports the observed relationship between the NAST and Ts over northeastern North America, as well as the link between the NPST and El Niño–Southern Oscillation. The near-future projections of Ts and storm tracks are characterized by a warmer planet under the influence of increasing greenhouse gases and a significant weakening of both the NAST and the NPST. The potential role of the NAST in redistributing changes in Ts over the surrounding regions is also examined. The anomalous equatorward moisture flux associated with the weakening trend of the NAST would enhance the warming over its upstream region and hinder the warming over its downstream region via modulation of the downward infrared radiation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Hye-Mi Kim, hyemi.kim@stonybrook.edu
Save
  • Bader, J., M. D. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, and M. Miles, 2011: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmos. Res., 101, 809834, doi:10.1016/j.atmosres.2011.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet‐stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, doi:10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

  • Black, R. X., and R. M. Dole, 2000: Storm tracks and barotropic deformation in climate models. J. Climate, 13, 27122728, doi:10.1175/1520-0442(2000)013<2712:STABDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2016: The transient and equilibrium climate response to rapid summertime sea ice loss in CCSM4. J. Climate, 29, 401417, doi:10.1175/JCLI-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burkhardt, U., and I. N. James, 2006: The effect of Doppler correction on measures of storm track intensity. Climate Dyn., 27, 515530, doi:10.1007/s00382-006-0146-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., S. Yang, H. Van den Dool, and V. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus, 59A, 127140, doi:10.1111/j.1600-0870.2006.00213.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2011: Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365352, doi:10.1175/2011JCLI4181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2009: Are band-pass variance statistics useful measures of storm track activity? Re-examining storm track variability associated with the NAO using multiple storm track measures. Climate Dyn., 33, 277296, doi:10.1007/s00382-009-0532-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642658, doi:10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and A. M. W. Yau, 2016: Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Climate Dyn., 47, 14351454, doi:10.1007/s00382-015-2911-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, C. G. Ma, C. Zheng, and A. M. W. Yau, 2016: Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett., 43, 22002208, doi:10.1002/2016GL068172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., F. Aires, J. A. Francis, and J. R. Miller, 2006: Observed relationships between Arctic longwave cloud forcing and cloud parameters using a neural network. J. Climate, 19, 40874104, doi:10.1175/JCLI3839.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christoph, M., U. Ulbrich, and P. Speth, 1997: Midwinter suppression of Northern Hemisphere storm track activity in the real atmosphere and in GCM experiments. J. Atmos. Sci., 54, 15891599, doi:10.1175/1520-0469(1997)054<1589:MSONHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang, 2009: Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys. Res. Lett., 36, L14801, doi:10.1029/2009GL038777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

  • Colle, B. A., and Coauthors, 2008: New York City’s vulnerability to coastal flooding. Bull. Amer. Meteor. Soc., 89, 829841, doi:10.1175/2007BAMS2401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., J. F. Booth, and E. K. M. Chang, 2015: A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr. Climate Change Rep., 1, 125143, doi:10.1007/s40641-015-0013-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., and T. Jiang, 2011: Intraseasonal modulation of the North Pacific storm track by tropical convection in boreal winter. J. Climate, 24, 11221137, doi:10.1175/2010JCLI3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and R. X. Black, 1990: Life cycles of persistent anomalies. Part II: The development of persistent negative height anomalies over the North Pacific Ocean. Mon. Wea. Rev., 118, 824846, doi:10.1175/1520-0493(1990)118<0824:LCOPAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.3402/tellusa.v1i3.8507.

  • Fischer-Bruns, I., H. von Storch, J. González-Rouco, and E. Zorita, 2005: Modelling the variability of midlatitude storm activity on decadal to century time scales. Climate Dyn., 25, 461476, doi:10.1007/s00382-005-0036-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid‐latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., 2006: Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett., 33, L24816, doi:10.1029/2006GL027504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, Q., and M. Sugi, 2001: Variability of the North Atlantic cyclone activity in winter analyzed from NCEP–NCAR reanalysis data. J. Climate, 14, 38633873, doi:10.1175/1520-0442(2001)014<3863:VOTNAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—study with a high-resolution AGCM. J. Climate, 16, 22622274, doi:10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and H. F. Diaz, 2001: Evidence for intensification of North Pacific winter cyclones since 1948. Bull. Amer. Meteor. Soc., 82, 18691893, doi:10.1175/1520-0477(2001)082<1869:EFIONP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., 2006: Do changes in the midlatitude circulation have any impact on the Arctic surface air temperature trend? J. Climate, 19, 54225438, doi:10.1175/JCLI3906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., and E. K. M. Chang, 2004: The effects of variations in jet width on the growth of baroclinic waves: Implications for midwinter Pacific storm track variability. J. Atmos. Sci., 61, 2340, doi:10.1175/1520-0469(2004)061<0023:TEOVIJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, T. J. Woollings, G. Zappa, and K. I. Hodges, 2012: How large are projected 21st century storm track changes? Geophys. Res. Lett., 39, L18707, doi:10.1029/2012GL052873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2015: Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Climate Dyn., 45, 28472860, doi:10.1007/s00382-015-2510-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and Coauthors, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea‐ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, doi:10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, doi:10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, doi:10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Crossref
    • Export Citation
  • Kay, J., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kocin, P. J., A. D. Weiss, and J. J. Wagner, 1988: The great Arctic outbreak and east coast blizzard of February 1899. Wea. Forecasting, 3, 305318, doi:10.1175/1520-0434(1988)003<0305:TGAOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, doi:10.1175/JHM-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, doi:10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., J.-Y. Lee, B. Wang, F.-F. Jin, W.-J. Lee, and K.-J. Ha, 2011: A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: Local energetics and moisture effect. Climate Dyn., 37, 24552469, doi:10.1007/s00382-011-1027-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., J.-Y. Lee, B. Wang, K.-J. Ha, K.-Y. Heo, F.-F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39, 313327, doi:10.1007/s00382-011-1188-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y. Y., and G. H. Lim, 2012: Dependency of the North Pacific winter storm tracks on the zonal distribution of MJO convection. J. Geophys. Res., 117, D14101, doi:10.1029/2011JD016417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y. Y., G. H. Lim, and J. S. Kug, 2010: Influence of the East Asian winter monsoon on the storm track activity over the North Pacific. J. Geophys. Res., 115, D09102, doi:10.1029/2009JD012813.

    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, 2014: Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett., 9, 084002, doi:10.1088/1748-9326/9/8/084002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, doi:10.1073/pnas.1210239109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—a review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677, doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, doi:10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 16291642, doi:10.1175/1520-0469(1992)049<1629:MSOBWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15, 18551874, doi:10.1175/1520-0442(2002)015<1855:IADMRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea‐ice reduction in late autumn. J. Geophys. Res. Atmos., 120, 32093227, doi:10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl. Acad. Sci. USA, 107, 19 17619 180, doi:10.1073/pnas.1011547107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large‐scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic—cold continents: Climate impacts of the newly open Arctic Sea. Polar Res., 30, 15787, doi:10.3402/polar.v30i0.15787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., S. Lee, S.-W. Son, S. B. Feldstein, and Y. Kosaka, 2015: The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Climate, 28, 50305040, doi:10.1175/JCLI-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Perlwitz, J., M. Hoerling, and R. Dole, 2015: Arctic tropospheric warming: Causes and linkages to lower latitudes. J. Climate, 28, 21542167, doi:10.1175/JCLI-D-14-00095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, doi:10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, doi:10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2009: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys. Res. Lett., 36, L19715, doi:10.1029/2009GL039810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., J. Wallace, and G. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, doi:10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., L. Wang, W. Chen, and Y. Zhang, 2016: Intraseasonal variation of the strength of the East Asian trough and its climatic impacts in boreal winter. J. Climate, 29, 25572577, doi:10.1175/JCLI-D-14-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 1997: Variations of midlatitude transient dynamics associated with ENSO. J. Atmos. Sci., 54, 777790, doi:10.1175/1520-0469(1997)054<0777:VOMTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 60216032, doi:10.1175/2009JCLI3100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, doi:10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, doi:10.1002/2016GL069024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., and R. Shirooka, 2014: Storm track activity over the North Pacific associated with the Madden‐Julian oscillation under ENSO conditions during boreal winter. J. Geophys. Res. Atmos., 119, 10 66310 683, doi:10.1002/2014JD021973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Q., X. Zhang, X. Yang, and J. A. Francis, 2013: Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett., 8, 014036, doi:10.1088/1748-9326/8/1/014036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319, doi:10.1007/BF00204745.

  • Walker, G. T., 1924: Correlations in seasonal variations of weather, IX: A further study of world weather. Mem. Indian Meteor. Dep., 24, 275332.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 5263, doi:10.1016/j.gloplacha.2014.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: The East Asian winter monsoon: Re-amplification in the mid-2000s. Chin. Sci. Bull., 59, 430436, doi:10.1007/s11434-013-0029-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2013: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 13751394, doi:10.1175/MWR-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., V. R. Swail, and F. W. Zwiers, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J. Climate, 19, 31453166, doi:10.1175/JCLI3781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, doi:10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large‐scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, doi:10.1002/grl.50912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and M. Blackburn, 2012: The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Climate, 25, 886902, doi:10.1175/JCLI-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci., 5, 313317, doi:10.1038/ngeo1438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanisms of arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, doi:10.1175/JCLI-D-11-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, doi:10.1175/JCLI-D-12-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., G. Masato, L. Shaffrey, T. Woollings, and K. Hodges, 2014: Linking Northern Hemisphere blocking and storm track biases in the CMIP5 climate models. Geophys. Res. Lett., 41, 135139, doi:10.1002/2013GL058480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. He, J. Zhang, I. Polyakov, R. Gerdes, J. Inoue, and P. Wu, 2013: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Climate Change, 3, 4751, doi:10.1038/nclimate1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1481 391 22
PDF Downloads 1060 176 14