Boreal Summer Intraseasonal Phases Identified by Nonlinear Multivariate Empirical Orthogonal Function–Based Self-Organizing Map (ESOM) Analysis

Jung-Eun Chu Division of Earth Environmental System, College of Natural Science, and Research Center for Climate Sciences, Pusan National University, Busan, South Korea

Search for other papers by Jung-Eun Chu in
Current site
Google Scholar
PubMed
Close
,
Bin Wang International Pacific Research Center, and Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
,
June-Yi Lee Research Center for Climate Sciences, Pusan National University, Busan, South Korea

Search for other papers by June-Yi Lee in
Current site
Google Scholar
PubMed
Close
, and
Kyung-Ja Ha Division of Earth Environmental System, College of Natural Science, Research Center for Climate Sciences, and Department of Atmospheric Sciences, Pusan National University, Busan, South Korea

Search for other papers by Kyung-Ja Ha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study develops an empirical orthogonal function (EOF)-based self-organizing map (SOM) (ESOM) analysis to identify the nonlinear characteristics of the boreal summer intraseasonal oscillation (BSISO), which involves interactions between the summer mean circulation and the convectively coupled equatorial waves, which make BSISO evolution more complex than the Madden–Julian oscillation. The method utilizes the first five principal components of the outgoing longwave radiation (OLR) and the zonal wind at 850 hPa (U850) and has the advantages of filtering out uncertainties from noise and being free from mathematical restrictions, such as orthogonality and linearity.

The ESOM analysis enables the detection of BSISO over the Asian summer monsoon region with eight phases. The four most distinguishable phases represent 1) a pair of stationary patterns with a dipole between the eastern Indian Ocean and the Philippine Sea (phases 1 and 5) and 2) a pair of propagating patterns with a northwest–southeast-tilted rain belt structure (phases 3 and 7). Phases 1 and 5 show an alternating seesaw oscillation throughout the summer with a 30–60-day period, whereas phases 3 and 7 peak in mid-June and early June denoting the monsoon rainy season and premonsoon period of Asian summer monsoon. ESOM captures that phases 1 and 5 happen more frequently and last longer than phases 3 and 7, whereas multivariate EOF analysis fails to describe this nonlinear occurrence. Phases 3 and phase 7 display distinct asymmetries in convective activity over the eastern Indian Ocean related to the relatively slow-growing and fast-decaying convective activity. The relationship with large-scale SST forcing is also discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Kyung-Ja Ha, kjha@pusan.ac.kr

Abstract

This study develops an empirical orthogonal function (EOF)-based self-organizing map (SOM) (ESOM) analysis to identify the nonlinear characteristics of the boreal summer intraseasonal oscillation (BSISO), which involves interactions between the summer mean circulation and the convectively coupled equatorial waves, which make BSISO evolution more complex than the Madden–Julian oscillation. The method utilizes the first five principal components of the outgoing longwave radiation (OLR) and the zonal wind at 850 hPa (U850) and has the advantages of filtering out uncertainties from noise and being free from mathematical restrictions, such as orthogonality and linearity.

The ESOM analysis enables the detection of BSISO over the Asian summer monsoon region with eight phases. The four most distinguishable phases represent 1) a pair of stationary patterns with a dipole between the eastern Indian Ocean and the Philippine Sea (phases 1 and 5) and 2) a pair of propagating patterns with a northwest–southeast-tilted rain belt structure (phases 3 and 7). Phases 1 and 5 show an alternating seesaw oscillation throughout the summer with a 30–60-day period, whereas phases 3 and 7 peak in mid-June and early June denoting the monsoon rainy season and premonsoon period of Asian summer monsoon. ESOM captures that phases 1 and 5 happen more frequently and last longer than phases 3 and 7, whereas multivariate EOF analysis fails to describe this nonlinear occurrence. Phases 3 and phase 7 display distinct asymmetries in convective activity over the eastern Indian Ocean related to the relatively slow-growing and fast-decaying convective activity. The relationship with large-scale SST forcing is also discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Prof. Kyung-Ja Ha, kjha@pusan.ac.kr
Save
  • Annamalai, H., and M. J. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, doi:10.1007/s003820100161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borah, N., A. K. Sahai, R. Chattopadhyay, S. Joseph, S. Abhilash, and B. N. Goswami, 2013: A self-organizing map–based ensemble forecast system for extended range prediction of active/break cycles of Indian summer monsoon. J. Geophys. Res. Atmos., 118, 90229034, doi:10.1002/jgrd.50688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., A. K. Sahai, and B. N. Goswami, 2008: Objective identification of nonlinear convectively coupled phases of monsoon intraseasonal oscillation: Implications for prediction. J. Atmos. Sci., 65, 15491569, doi:10.1175/2007JAS2474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, R., A. Vintzileos, and C. Zhang, 2013: A description of the Madden–Julian oscillation based on a self-organizing map. J. Climate, 26, 17161732, doi:10.1175/JCLI-D-12-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-E., S. N. Hameed, and K.-J. Ha, 2012: Nonlinear, intraseasonal phases of the East Asian summer monsoon: Extraction and analysis using self-organizing maps. J. Climate, 25, 69756988, doi:10.1175/JCLI-D-11-00512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2009: Predicting extreme phases of the Indian summer monsoon. J. Climate, 22, 346363, doi:10.1175/2008JCLI2449.1.

  • Ding, Y., and L. J. C. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., J.-Y. Lee, and K.-J. Ha, 2016: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 14031412, doi:10.1002/joc.4433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate, 26, 48164827, doi:10.1175/JCLI-D-12-00649.1.

  • Joseph, S., A. K. Sahai, R. Chattopadhyay, and B. N. Goswami, 2011: Can El Niño–Southern Oscillation (ENSO) events modulate intraseasonal oscillations of Indian summer monsoon? J. Geophys. Res., 116, D20123, doi:10.1029/2010JD015510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, Y., and T. Yasunari, 2005: Interannual variability of the 10–25- and 30–60-day variation over the South China Sea during boreal summer. Geophys. Res. Lett., 32, L04710, doi:10.1029/2004GL021836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191037, doi:10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., C.-H. Ho, Y.-K. Lim, and K.-M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322340, doi:10.1175/1520-0493(1999)127<0322:PMOCSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, doi:10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1982: Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 5969, doi:10.1007/BF00337288.

  • Kohonen, T., 1990: The self-organizing map. Proc. IEEE, 78, 14641480, doi:10.1109/5.58325.

  • Kohonen, T., 1997: Self-Organizing Maps. 2nd ed. Springer Series in Information Sciences, Vol. 30, 426 pp.

    • Crossref
    • Export Citation
  • Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267283, doi:10.1007/s00382-010-0857-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, doi:10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • LinHo, and B. Wang, 2002: The time–space structure of the Asian–Pacific summer monsoon: A fast annual cycle view. J. Climate, 15, 20012019, doi:10.1175/1520-0442(2002)015<2001:TTSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., Y. Liu, G. Wu, J. Yan, J. He, and S. Ren, 2015: Asian summer monsoon onset barrier and its formation mechanism. Climate Dyn., 45, 711726, doi:10.1007/s00382-014-2296-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2014: A mechanism for explaining the maximum intraseasonal oscillation center over the western North Pacific. J. Climate, 27, 958968, doi:10.1175/JCLI-D-12-00797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., J. C. L. Chan, J. Mao, and G. Wu, 2002: The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon. Wea. Rev., 130, 27312744, doi:10.1175/1520-0493(2002)130<2731:TROBOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, doi:10.1029/2005JC003117.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oettli, P., T. Tozuka, T. Izumo, F. A. Engelbrecht, and T. Yamagata, 2014: The self-organizing map, a new approach to apprehend the Madden–Julian oscillation influence on the intraseasonal variability of rainfall in the southern African region. Climate Dyn., 43, 15571573, doi:10.1007/s00382-013-1985-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, H., and K.-J. Ha, 2015: Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon. Climate Dyn., 44, 17511766, doi:10.1007/s00382-014-2268-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahai, A. K., R. Chattopadhyay, S. Joseph, S. Abhilash, N. Borah, and B. N. Goswami, 2014: A new method to compute the principal components from self-organizing maps: An application to monsoon intraseasonal oscillations. Int. J. Climatol., 34, 29252939.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and B. Wang, 2003: Interannual variations of the boreal summer intraseasonal oscillation in the Asian–Pacific region. J. Climate, 16, 35723584, doi:10.1175/1520-0442(2003)016<3572:IVOTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, doi:10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xu, 1997: Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Climate, 10, 10711085, doi:10.1175/1520-0442(1997)010<1071:NHSMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., P. J. Webster, and H. Teng, 2005: Antecedents and self-induction of active-break south Asian monsoon unraveled by satellites. Geophys. Res. Lett., 32, L17708, doi:10.1029/2005GL023769.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/s00382-008-0460-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO Index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242.

  • Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., B. Ren, K.-J. Ha, J. C. L. Chan, and J.-G. Jhun, 2009: The 30–60-day oscillation in the East Asian summer monsoon and its time-dependent association with the ENSO. Tellus, 61A, 565578, doi:10.1111/j.1600-0870.2009.00410.x.

    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., K.-H. Seo, and K.-J. Ha, 2010: Interdecadal change in the relationship between ENSO and the intraseasonal oscillation in East Asia. J. Climate, 23, 35993612, doi:10.1175/2010JCLI3431.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, B., and B. Wang, 1993: The 30–60-day convection seesaw between the tropical Indian and western Pacific Oceans. J. Atmos. Sci., 50, 184199, doi:10.1175/1520-0469(1993)050<0184:TDCSBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 495 131 6
PDF Downloads 401 90 7