Spectrally Dependent CLARREO Infrared Spectrometer Calibration Requirement for Climate Change Detection

Xu Liu NASA Langley Research Center, Hampton, Virginia

Search for other papers by Xu Liu in
Current site
Google Scholar
PubMed
Close
,
Wan Wu Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Wan Wu in
Current site
Google Scholar
PubMed
Close
,
Bruce A. Wielicki NASA Langley Research Center, Hampton, Virginia

Search for other papers by Bruce A. Wielicki in
Current site
Google Scholar
PubMed
Close
,
Qiguang Yang Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Qiguang Yang in
Current site
Google Scholar
PubMed
Close
,
Susan H. Kizer Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Susan H. Kizer in
Current site
Google Scholar
PubMed
Close
,
Xianglei Huang Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

Search for other papers by Xianglei Huang in
Current site
Google Scholar
PubMed
Close
,
Xiuhong Chen Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

Search for other papers by Xiuhong Chen in
Current site
Google Scholar
PubMed
Close
,
Seiji Kato NASA Langley Research Center, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
Yolanda L. Shea NASA Langley Research Center, Hampton, Virginia

Search for other papers by Yolanda L. Shea in
Current site
Google Scholar
PubMed
Close
, and
Martin G. Mlynczak NASA Langley Research Center, Hampton, Virginia

Search for other papers by Martin G. Mlynczak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Detecting climate trends of atmospheric temperature, moisture, cloud, and surface temperature requires accurately calibrated satellite instruments such as the Climate Absolute Radiance and Refractivity Observatory (CLARREO). Previous studies have evaluated the CLARREO measurement requirements for achieving climate change accuracy goals in orbit. The present study further quantifies the spectrally dependent IR instrument calibration requirement for detecting trends of atmospheric temperature and moisture profiles. The temperature, water vapor, and surface skin temperature variability and the associated correlation time are derived using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. The results are further validated using climate model simulation results. With the derived natural variability as the reference, the calibration requirement is established by carrying out a simulation study for CLARREO observations of various atmospheric states under all-sky conditions. A 0.04-K (k = 2; 95% confidence) radiometric calibration requirement baseline is derived using a spectral fingerprinting method. It is also demonstrated that the requirement is spectrally dependent and that some spectral regions can be relaxed as a result of the hyperspectral nature of the CLARREO instrument. Relaxing the requirement to 0.06 K (k = 2) is discussed further based on the uncertainties associated with the temperature and water vapor natural variability and relatively small delay in the time to detect for trends relative to the baseline case. The methodology used in this study can be extended to other parameters (such as clouds and CO2) and other instrument configurations.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Xu Liu, xu.liu-1@nasa.gov

Abstract

Detecting climate trends of atmospheric temperature, moisture, cloud, and surface temperature requires accurately calibrated satellite instruments such as the Climate Absolute Radiance and Refractivity Observatory (CLARREO). Previous studies have evaluated the CLARREO measurement requirements for achieving climate change accuracy goals in orbit. The present study further quantifies the spectrally dependent IR instrument calibration requirement for detecting trends of atmospheric temperature and moisture profiles. The temperature, water vapor, and surface skin temperature variability and the associated correlation time are derived using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. The results are further validated using climate model simulation results. With the derived natural variability as the reference, the calibration requirement is established by carrying out a simulation study for CLARREO observations of various atmospheric states under all-sky conditions. A 0.04-K (k = 2; 95% confidence) radiometric calibration requirement baseline is derived using a spectral fingerprinting method. It is also demonstrated that the requirement is spectrally dependent and that some spectral regions can be relaxed as a result of the hyperspectral nature of the CLARREO instrument. Relaxing the requirement to 0.06 K (k = 2) is discussed further based on the uncertainties associated with the temperature and water vapor natural variability and relatively small delay in the time to detect for trends relative to the baseline case. The methodology used in this study can be extended to other parameters (such as clouds and CO2) and other instrument configurations.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Xu Liu, xu.liu-1@nasa.gov
Save
  • Angell, J. K., 2000: Tropospheric temperature variations adjusted for El Niño, 1958–1998. J. Geophys. Res., 105, 11 84111 849, doi:10.1029/2000JD900044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borbas, E. E., S. W. Seemann, H. L. Huang, J. Li, and W. P. Menzel, 2005: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. Proc. XIV Int. ATOVS Study Conf., Beijing, China, University of Wisconsin–Madison, 763–770.

  • Chiodo, G., D. R. Marsh, R. Garcia-Herrera, N. Calvo, and J. A. Garcia, 2014: On the detection of the solar signal in the tropical stratosphere. Atmos. Chem. Phys., 14, 52515269, doi:10.5194/acp-14-5251-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculation of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, doi:10.1029/92JD01419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crooks, S. A., and L. J. Gray, 2005: Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J. Climate, 18, 9961015, doi:10.1175/JCLI-3308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. M. Davis, 2010: Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res., 115, D19127, doi:10.1029/2010JD014192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett., 6, 044022, doi:10.1088/1748-9326/6/4/044022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GISS, 2016: Global and hemispheric mean aerosol optical depth at 550 nm. Accessed 18 April 2017. [Available online at https://data.giss.nasa.gov/modelforce/strataer/tau.line_2012.12.txt.]

  • Hasselmann, K., 1997: Multi‐pattern fingerprint method for detection and attribution of climate change. Climate Dyn., 13, 601611, doi:10.1007/s003820050185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. Leroy, P. J. Gero, J. Dykema, and J. Anderson, 2010: Separation of longwave climate feedbacks from spectral observations. J. Geophys. Res., 115, D07104, doi:10.1029/2009JD012766.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Detection of atmospheric changes in spatially and temporally averaged infrared spectra observed from space. J. Climate, 24, 63926407, doi:10.1175/JCLI-D-10-05005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2008: How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 35, L18701, doi:10.1029/2008GL034864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. G. Anderson, and G. Ohring, 2008a: Climate signal detection times and constraints on climate benchmark accuracy requirements. J. Climate, 21, 841846, doi:10.1175/2007JCLI1946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S. S., J. G. Anderson, J. Dykema, and R. Goody, 2008b: Testing climate models using thermal infrared spectra. J. Climate, 21, 18631875, doi:10.1175/2007JCLI2061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and A. Sharma, 2013: Evaluation of volcanic aerosol impacts on atmospheric water vapor using CMIP3 and CMIP5 simulations. J. Geophys. Res., 118, 44484457, doi:10.1002/jgrd.50420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., W. L. Smith, D. K. Zhou, and A. M. Larar, 2006: Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. Appl. Opt., 45, 201209, doi:10.1364/AO.45.000201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., D. K. Zhou, A. Larar, W. L. Smith, and S. A. Mango, 2007: Case study a new radiative transfer model and retrieval algorithm using EAQUATE Data. Quart. J. Roy. Meteor. Soc., 133, 243256, doi:10.1002/qj.156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., D. K. Zhou, A. Larar, W. L. Smith, P. Schluessel, S. M. Newman, J. P. Taylor, and W. Wu, 2009: Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels. Atmos. Chem. Phys., 9, 91299142, doi:10.5194/acp-9-9121-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., Q. Yang, H. Li, Z. Jin, W. Wu, S. Kizer, D. K. Zhou, and P. Yang, 2016: Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region. Appl. Opt., 55, 82368247, doi:10.1364/AO.55.008236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martins, J. P. A., I. F. Trigo, V. A. Bento, and C. A. da Camara, 2016: Physically constrained calibration database for land surface temperature using infrared retrieval algorithms. Remote Sens., 8, 808, doi:10.3390/rs8100808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., 2010: Infrared instrument overview. CLARREO Science Meeting, Hampton, VA, National Aeronautics and Space Administration. [Available online at https://clarreo.larc.nasa.gov/workshops/2010STM/Wednesday/Overview_IR.pptx.]

  • NOAA/NCEP, 2016: Climate Prediction Center (CPC) equatorial zonally-averaged 30-hpa zonal wind anomalies. Accessed February 2016. [Available online at http://www.cpc.ncep.noaa.gov/data/indices/qbo.u30.index.]

  • Phojanamongkolkij, N., S. Kato, B. Wielicki, P. C. Taylor, and M. Mlynczak, 2014: A comparison of climate signal trend detection uncertainty analysis methods. J. Climate, 27, 33633376, doi:10.1175/JCLI-D-13-00400.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., R. C. Pacanowski, N.-C. Lau, and M. J. Nath, 1992: Simulation of ENSO with a global atmospheric GCM coupled to a high-resolution, tropical Pacific Ocean GCM. J. Climate, 5, 308329, doi:10.1175/1520-0442(1992)005<0308:SOEWAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, A., and J. Xu, 2013: Evaluation of the temperature trend and climate forcing in the pre- and post periods of satellite data assimilation. Satellite-Based Applications on Climate Change, J. Qu, A. Powell, and M. V. K. Sivakumar, Eds., Springer, 49–65.

    • Crossref
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2001: Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res., 106, 28 03328 059, doi:10.1029/2000JD000189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22 98722 994, doi:10.1029/93JD02553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, and H.-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear-sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108123, doi:10.1175/2007JAMC1590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SILSO, 2015: World Data Center - Sunspot number and long-term solar observations. Accessed October 2015. [Available online at http://www.sidc.be/silso/DATA/SN_m_tot_V2.0.txt.]

  • Takahashi, M., 1996: Simulation of the quasi-biennial oscillation in a general circulation model. Geophys. Res. Lett., 23, 661664, doi:10.1029/95GL03413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. PCMDI Tech. Rep., 33 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]

  • Wang, L., Y. Han, X. Jin, Y. Chen, and D. A. Tremblay, 2015: Radiometric consistency assessment of hyperspectral infrared sounders. Atmos. Meas. Tech., 8, 48314844, doi:10.5194/amt-8-4831-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherhead, E. C., and Coauthors, 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res., 103, 17 14917 161, doi:10.1029/98JD00995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, doi:10.1175/BAMS-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., 2000: ENSO, volcanoes and record-breaking temperatures. Geophys. Res. Lett., 27, 41014104, doi:10.1029/2000GL012159.

  • Willett, K. M., N. P. Gillett, P. D. Jones, and P. W. Thorne, 2007: Attribution of observed surface humidity changes to human influence. Nature, 449, 710712, doi:10.1038/nature06207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, doi:10.1002/joc.2336. [Available online at https://www.esrl.noaa.gov/psd/enso/mei.ext/table.ext.html]

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., X. Liu, W. Wu, S. Kizer, and R. R. Baize, 2016: Fast and accurate hybrid stream PCRTM-SOLAR radiative transfer model for reflected solar spectrum simulation in the cloudy atmosphere. Opt. Express, 24, A1514A1527, doi:10.1364/OE.24.0A1514.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1347 875 252
PDF Downloads 385 83 5